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Precision and reliability of periodically and quasiperiodically driven integrate-and-fire neurons
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Neurons in the brain communicate via trains of all-or-none electric events known as spikes. How the brain
encodes information using spikes—the neural code—remains elusive. Here the robustness against noise of
stimulus-induced neural spike trains is studied in terms of attractors and bifurcations. The dynamics of model
neurons converges after a transient onto an attractor yielding a reproducible sequence of spike times. At a
bifurcation point the spike times on the attractor change discontinuously when a parameter is varied. Reliabil-
ity, the stability of the attractor against noise, is reduced when the neuron operates close to a bifurcation point.
We determined using analytical spike-time maps the attractor and bifurcation structure of an integrate-and-fire
model neuron driven by a periodic or a quasiperiodic piecewise constant current and investigated the stability
of attractors against noise. The integrate-and-fire model neuron became mode locked to the periodic current
with a rational winding numbep/q and produceg spikes perm cycles. There werg attractorsp:q mode-
locking regions formed Arnold tongues. In the model, reliability was the highest during 1:1 mode locking when
there was only one attractor, as was also observed in recent experiments. The quasiperiodically driven neuron
mode locked to either one of the two drive periods, or to a linear combination of both of them. Mode-locking
regions were organized in Arnold tongues and reliability was again highest when there was only one attractor.
These results show that neuronal reliability in response to the rhythmic drive generated by synchronized
networks of neurons is profoundly influenced by the location of the Arnold tongues in parameter space.
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[. INTRODUCTION attractor{Fig. 1(Aa)] and from a different set it converged to
the second attractofFig. 1(Ab)]. Each attractor corre-
Although spike trains in the cerebral cortex are highlysponded to a distinct sequence of spike tifigg. 1(Ac)]. In
variable (for a review sed1]), neurons can fire with high the presence of weak noise the neuron also converged to the
temporal precision and reliability vitro [2—8]. Precision is  attractor, but the voltage fluctuated around the zero noise
defined here as the inverse of the temporal jitter in the spikealue. When the neuron remained on the attractor it produced
time and reliability as the reproducibility of spikes acrossthe same sequence of spike times on each trial and the spike-
different presentations of the same stimuldgials).  time variance across trials was proportional to the noise vari-
Information-theoretical analyses of the neuronal spike trainance[26]. The driving stimulus can be parametrized in terms
in the lateral geniculate nucleus indicate that precise spikef, for instance, the amplitude, the frequency, and the mean.
times contain more information about the stimulus than fir-A bifurcation point is a stimulus parameter value at which
ing rate alond9,10]. It is unknown how these precise spike the attractor voltage and output spike train change discon-
times are used in the cort¢%,11-15. tinuously when the parameter is varied by a small amount.
If a feature is present in the spike-train response to onéloise sensitivity of the attractghence reliability was con-
stimulus across multiple trials it can form the basis of a neunected to the presence of bifurcations. For parameters close
ronal code. Spike-time reliability is a measure for the repro+to a bifurcation point, noise can induce a deviation from the
ducibility of individual spike times across trial]46]. Neu-  attractor so that different spike trains are obtained across
rons produce a reliable sequence of spike times in responskfferent trials, reducing reliability. Two possible deviations
to some inputs and respond unreliably to others. Inithe are shown in Fig. Bb). Two spike trains were considered
vitro slice, neurons fire reliably when injected with a randomdifferent when at least one spike time in the first spike train
current containing high frequency components, but they firaliffered by more than the typical jitter from all the spike
unreliably when driven with a low pass or constant currenttimes in the second spike traj@7] (see also Sec. VICThe
[16—27. Sinusoidally driven neurons show resonances in thebove framework makes it possible to assess the reliability
reliability as a function of drive frequend®3-25. for many different noise strengths by varying stimulus pa-
Recently, we proposed a framework for understanding theameters and determining bifurcation points.
reliability of neuronal discharge in terms of two mathemati- The reliability of the neuronal spike-train response to a
cal concepts, attractor and bifurcatip®6]. We briefly re- random fluctuating current is different compared with the
view these previous results to set the stage for the issuasliability in response to a periodic driving current. These
addressed in this paper. Examples of attractors of adifferences are related to the bifurcation structure: mode
integrate-and-firdlAF) model neuron are shown in Fig. 1. locking to periodic drives leads to Arnold tongues that are
The model neuron was driven by a quasiperiodic currenaibsent for a random fluctuating drive. A quasiperiodic drive
consisting of the sum of two sinusoids with an irrational ratiois not periodic but nonetheless has long time correlations. It
between their frequencies. There were two attractors. Frons intermediate between a periodic and random fluctuating
one set of initial voltages, the voltage converged to the firstirive. Here we compare the bifurcation structure of an
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(A) a attractor 1 Il. METHODS

\Y A. Simulation algorithm
ol The membrane potenti&d of an integrate-and-fire model

neuron driven by a fluctuating current satisf{@8],
attractor 2

dv
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wherel was a time-independent driving currefft) was a
fluctuating current, and was a white noise current, with
Vinit \ l } attr 2 zero mean and variande, that represented the effects of
— I | | | | | | intrinsic noise. When the voltag® reached threshold,
attr 1 V(t7)=1, a spike was emitted and the voltage was reset to
0 5 10 15 20 25 zero,V(t+)=.0.. Heret™ was the limit tpt from below, and
t t* was the limit tot from above. The first term on the right
hand side of Eq(1) represented the decay of the voltage to
the resting membrane potentidl=0. Dimensionless units

a were used, one voltage unit corresponded to the distance
AY/ between the resting membrane potential and action potential

i threshold,~20 mV [28]; one time unit corresponded to the

b i

C
1r \ N 1 [ [ ' ] ] [ attrl

-

o

membrane time constant, approximately equal to 10—40 ms

[28]. With the membrane capacitance taken equal to
1 W 1 wFlen?, a driving current equal to 1 corresponds to
: 0.5-2 uAlcm?.

1000 [ Y
. ’: } 1\ : A periodic or quasiperiodic piecewise constant current
L . C il l; O‘\2l' r

e

f(t) was injected into the neuron. The periodic current was
equal tof(t)=—A when O=smod(t,T)<T/2 and f(t)=A
) otherwise. HeréA was the amplitude of the drivd, was the
. period, and the frequency was=2#/T. The quasiperiodic
0 5 10 15 20 25 current consisted of the sum of two periodic currents, with
t periodsT, and T, and a relative phasa ¢, f(t)=Aql(t
+A @) +A,l,(t). HereA; andA, were the drive amplitudes

(A) The voltage was plotted as a function of time starting from and w;=27/T,, w,=2n/T, were the drive frequenqes'
different initial voltage value¥;,;; . When the voltage reaches 1, a l1(t)=—1 when O<mod(,T,)<T,/2 and 1, othe_rW|se.
spike is emitted and the voltage is reset to 0. The dynamics con-2(t)=—1 when 0<mod(, T;) <T,/2 and 1, otherwise. In
verged to either of two different attractors) and(b), respectively.  the Simulations presented heke)=0.
The attractors remained distinct for long times. However, we did 1he voltage of the integrate-and-fire model neuron was
not establish whether this holds for arbitrarily long timés. The ~ integrated analyticalfEq. (1)]. When the last spike oc-
corresponding spike times (ordinaté as a function ofV,,;; (y  curred att;, V(t;)=0, the voltage at a later time, but be-
ordinate. The two attractors are labeled in the graph by attrl andore the next spike, was
attr2, respectively. Arrows indicate one of the two boundaries be-
tween the basins of attractiofiB) Dynamics in the presence of e Lt
noise.(a) 10 voltage traces antb) 1000 spike traingtrials) each V(tlt)=1(1-e ") +e tJt ds €[f(s)+&(s)]. (2)
starting atV;,,;; =0 but with a different realization of the noise. The !
neuron cpuld_remain on one attractor,(d_)} deviate from it during  The next spike time, was the smallest solution of the equa-
a few spike times, of2) make a transition to the other attractor. tion V(t2|t1)=1.
S_plke trains were or_der_ed on the value of the first spike tlm_e after The equation for periodic and quasiperiodic piecewise
t=15. Arrows in(a) indicate the voltage curves corresponding to . . - .
the two possible spike times ifb.1). consta_nt driving current was analy‘glcally inverted t(_) yle_ld a
spike-time mapgV. The map determined the next spike time
integrate-and-fire model neuron driven by a periodic piecet,;; as a function of the previous spike tinmg, t,;1
wise constant current with that of a neuron driven by a qua= M(t,). Details of the calculation are given in the Appen-
siperiodic piecewise constant current. The numerical calcudix. Simulations based on iteration of the spike-time map
lation was speeded up significantly since it was possible tevere up to two orders of magnitude faster than direct inte-
derive an analytical spike-time map representing the dynamgration and yielded spike times that were accurate to ma-
ics of neurons driven by piecewise constant currents. We findhine precision for zero noise and accurate to the square root
for both periodic and quasiperiodic drives thd) mode-  of machine precision for simulations with noise. The accu-
locking regions are organized in Arnold tongues &Bdre-  racy of the spike-time map for zero noise was checked
liability is highest when there is only one attractor. against results from direct integration using fourth-order

Trials

FIG. 1. Attractors of neurons driven by a quasiperiodic current.
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Runge-Kutta[29]. Threshold crossingsthe spike times o, A, A,, I, or D. The grid was specified by the starting
were determined by linear interpolation. Note that for lin- point Xmin, €nd pointx,a., and the number of grid points
early interpolated spike times a second-order Runge-Kuttg . The same notation holds fgrand is not repeated here
would also have been adequf8s]. and in what follows. We either used a linear grid,

B. Spike-time statistics i—1
. . . Xi=Xmint m(xmax_xmin)v
The mapt, . ;=M(t,) was iterated starting from the ini- x

tial spike timety=t;,;; to obtain 2000—10 000 spike times. In i—1 N, , or a logarithmic grid
most cases we todl,;;=0. The first 20% of the spike times e '

were discarded as a transient, the remainimidy i—1

=1600-8000 were used for further analysis as described be- Xj= exﬁ{lx,min"' m(lx,max_ I, min) |»

low. The periodically driven noiseless integrate-and-fire neu- X

ron converged after a transient onto a periodic attractor. Therej=1, ... N, Ly min= N Xpin» @NA 14 max= 1N Xmax.

mean interspike intervdlSl) was, The Arnold-tongue structure was determined based on the
Ng—1 winding number calculated from 1600—8000 spike times.
2 - 3) Grid points (; ,Aj) or (Ay;,l;) with a winding number sat-
am1 isfying |<N>—p/q1<1/400 were considered part of tipeq
. . ) ) Arnold tongue. Alternatively, for zero noise, Arnold Tongues

whereNg was the number of spikes in the simulation run, could also be determined by simultaneously solving a large
and 7,=t,.;—t,. The winding number, defined as the av- set of algebraic equations as in R&f1]. Here we use a brute
erage number of spikes per cycld\N)=T/7, was approxi- force approach made feasible by the computationally effi-
mately equal to a fractiop/q, hereT was the period. cient implementation of the spike-time map.

The neuron emittegh spikes inqg cycles, and the spike A different procedure was used for the construction in the
train repeated itself aftey cycles. The spike phase of spike ((, D) plane.D; was taken on a logarithmic grid. Theq
time t, was ¢,=mod(,,T)/T. On the attractor they, time  values for a givernw were determined foD=0. Thesep

1
Ns—

T=

1

series was periodic with periog, ¢m.p=¢mi2p=---  values were then used to calculaté as a function oD for
=W . Hence the neuron spiked only adifferent phases,  nonzeroD. For smallD values,o(P <D [32]. The firstN;
Ng/p—1 =7-10 nonzerd; values in the simulation run were
7 _P E y (4) used to fity;=In af")(Dj) to Ina;+a,InDj, herea; anda,
™ Ng o e were fitting parameters. The fit was accepted when
for m=1, ... p. In the presence of noise there was spike- 1 M 5
phase jitter, the standard deviation of the spike phase was N, 121 (7j—Inay;—a;InD;)°<0.1,
p
(P /1 S (o) and 0.45< a,<0.55. A grid point ;,D;), with j >N, was
pm=1 M part of thep:q Arnold tongue when
Ng/p—1 P (D{)—a,;D
(p) 2_3 2 _Ap2 j j
(om’) _Ns n§=:o ¢m+np Vi 5 O'(p)(Dj) 0.10.

In Egs.(4) and(5) it was assumed that the number of spikes Determining the Arnold-tongue structure is equivalent to
Ng is a multiple ofp, during the calculation the appropriate finding the bifurcations for which the winding number
changes were made when this was not the case. Not@ thatchanges discontinuously. A method for determining bifurca-
needed to be estimated frofN) prior to calculatings. tions in the presence of noise was recently presented in Refs.

For a quasiperiodic drive, there were two periods. Thg33,34. It involved constructing the phase transition
spike phase with respect 0, was ap}]:mod(tn ,T1)/T, and  matrix—the probability distribution of the phase of the next
with respect tdl , it was tﬁﬁ:mOd(tn,Tg)/Tz- The mean and Spike time conditional on the phase of the previous spike
variance of the phase were defined in analogy to E4s. time—and performing a spectral analysis on it.
and(5).

I1l. MODE LOCKING TO PERIODIC DRIVES

C. Arnold tongues The dynamical equations for the IAF model neuron were

Regions in parameter space with the same windingnalytically integrated to produce a spike-time map that pre-
number (NY=p/q formed Arnold tongues. The Arnold- dicted the next spike time given the previous spike time. The
tongue structure was determined for a number of parameteterivation and numerical implementation of the map is de-
combinations, specifically, of,A), (A5,I), and (@,D). scribed in Sec. IlI; further details are in the Appendix. The
A two-dimensional grid X;,y;) was constructed, here  map was iterated starting from an initial spike titg;=0.
=1,...Nys; j=1,...Ny; and x and y were The amplitudeA was 0.4 and the drive frequenay/27
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=1/T was varied, her@ was the drive periodcycle length. (A) 4 &
For a given frequencw the neuron converged, after a brief <N>
transient, on to a periodic attractor and was then mode
locked to the drive. The resulting spike train was periodic 0 :
with a period equal ta drive cycles, during whiclp spikes 1 B e 7
were emitted. The average interspike interval wasp. The L R - / y / / /
winding number(N) is the average number of spikes per ! P
drive cycle; during mode locking it was rational and equal to
p/q, wherep andq were positive integers.

For a constant driving curret=1.5 andA=0, the aver-
age interspike interval was approximately 1.1. For a finite
amplitude,A=0.4, the neuron was 1:1 mode locked when

-

oO=MNMwWwhra O
T T
L.

the period was close to 1.1. This led to a step of constant 0.2 /12 S

winding numberp/g=1, in the{N) versusw characteristic wen

[Fig. 2(Aa)]. There were also steps for other rational winding (B) (C)

numbers and théN)-o graph had the appearance of a stair- a

case. The steps with low values were wide, with the 1:1 k11 ‘le

step being the widest. 10T TTTTTT
During p:g mode locking the neuron fired atdifferent b / ! I ’ ’ I

phasesV,,, m=1, ... p. Here the phase was defined as the 1 IERE buit 05| ]

spike-time modulo the period, divided by the peri@ke, ¥ v

Sec. I). On a mode-locking step the winding number was 2 ol oo L L]

constant, whereas the spike phase increased anitRor in- 3 by ¥y "0 2 4 6 8

stance, during 1:1 entrainmet; was equal tc; on the left L

hand side of the.step and increased to 1 on the right hand FIG. 2. (A) The integrate-and-fire neuron was mode locked to a
side of the SteI;EF_Ig. 2Ab)]. . periodic piecewise constant curreri) The average number of
There wereg different attractors of the dynam!cs fprq spikes per cycle(N)=T/r, vs frequencyw=2/T. On the mode-
mode locking. The (_)ther attractors were obtamgd from gocking steps(N) was constant and equal to a fractiphq, the
given attractor by shifting over multiples of the drive cycle. neuron then emitte spikes inq cycles at phase¥;, ... ¥, (b)
This procedure is illustrated in Fig(R) for N=3. On the  The phases for steps win=3 and(c) the number of attractors;,
first attractor, the neuron fired at pha¥g on the first cycle,  with q<4, were plotted vso. Averages were over 3200 spikes after
at phasel, on the second cycle, and did not fire on the thirddiscarding the first 800 spikeé8) The number of attractors was
cycle. This spike pattern then repeated itself. A second attraequal tog. () The winding number wagN)= %, the neuron emitted
tor was obtained by shifting this pattern over one period, the spikes in 3 cycles with phasas, and¥,. The spike train was
neuron then did not fire during the first cycle, fireddat on  periodic with period of 3 cycles. The distance between two small
the second and ak, on the third cycle. A third attractor was ticks is the cycle lengtfi. (b) Two other attractors were obtained by
obtained by shifting the first one over two drive cycles. Thisshifting (1) the first attractor ovef2) one and(3) two periodsT,
multistability of the spike times should not be confused withrespectively(C) Neuron that was 1:2 mode locked to a drive with
a multistability that occurs for a noninvertible circle map T=0.56. All g attractors were reached from initial spike timgg
(see, for instance, Ref35]). In that case there are two or N thg interval betwee_n 0 gmﬂT. Ea_ch tick _representeq a spike, its
more stable solutions wittiifferentwinding numbers and the X ordinate was the spike tintg and itsy ordinate was given by the
Arold tongues intersect. starting spike time of the trial(A)—(C) Parameters werd
From a given initial condition only one attractor was ob- — 1-> A=0-4, andD=0.
tained. The set of initial conditions from which a given at-
tractor was obtained is the basin of attraction. In the spikeeccurred, and the frequency value at which this happened
time map formulation of the dynamics the initial condition was a bifurcation point. The bifurcation points were not dis-
was the first spike time. Alt] attractors were reached when tributed uniformly across the frequency axis: there were no
the first spike time was varied between 0 apd[Fig. 2(C)]. bifurcation points betweew/27~0.75 andw/27~1.0, and
When the dynamics were integrated in time using &g, many betweenw/27~0.5 andw/27~0.75.

the initial condition was the voltag¥,,;; at the start of the Reliability was defined as the stability of the attractor
simulation. All attractors were reached whép;; was varied against intrinsic nois¢27]. The discharge was unreliable
between 0 and Iresults not shown, see al§26]). when noise induced transitions from one attractor to a differ-

The number of attractorg varied nonmonotonically as a ent attractor, or when it induced an extra spike or prevented
function of w. For instance, between the 2:1 and 1:1 stepsa spike from occurring when there was only one stable at-
all otherq values were obtainedor clarity only data forq tractor. The attractors were not equally stable for all param-
<4 were shown in Fig. @c)]. The spike timegand phases eter values corresponding to the same winding number. Two
changed discontinuously during a transition from gnelue  frequency values for which 1:1 entrainment was obtained
to another. Hence, whem changed a spike-time bifurcation were considered as an example/27=0.7752 with ¥,
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1.0 —

Wn+ 1

1.0

FIG. 3. Spike-phase return map during 1:1 mode locking in the
presence of noise. In the return map the next phiasg was plot-
ted vs the previous phasg,. In the absence of noise, the return
map consisted of a single point with coordinatds, (V¥ ,), here¥
was the spike phase on the attractor. Two points were sh@yn,
open diamonyd drive period T=1.15 (w/27=0.8696) in the
middle of the step an@®, open squapeT=1.29 (w/27=0.7752)
close to the edge of the step. In the presence of nBisel0 %, the
attractor forT=1.15 was stable. The return map consisted of a
cloud of points around the zero-noise return ntap For T=1.29,
the attractor was unstable against noise. Most points were close
the zero-noise return mag). However, sometimes an extra spike in the graph.(A) N, —5000, N,=59, D=0 (B) N.,—1000 and

i i <O0. i . .
was introduced with a phasg,<0.5, the neuron then deviated Na=17, with noise strengtd equal to(a) 1x 10~ and (b) 4

from the attractor and the corresponding points formed an open
o ) . ; B

orbit. One such orbit was shown as large filled circles connected b)Z: 10°%.(C) The gnfigalong thed ais SSHS'Sted ONp =50 values
- L . . etweenD=1X10° and D=1X10"4 N, was 1000 andA
arrows that indicated the direction in which the orbit was traversed. . . X .

. . =0.4. Averages were over 3200 spikes after discarding a transient
3000 iterates were used to construct the return map, the first 500 ; s -
. . _ of 800 spikes. The driving current was=1.5. Arrows in(A),(B)
iterates were discarded. Other parameters were.5 andA=0.4. - .

indicate the 1:1 mode-locking Arnold tongues.

FIG. 4. Arnold tongues for a neuron driven by a piecewise con-
stant periodic current. Arnold tongues were constructed as de-
scribed in Sec. Il, the set of points with the same winding number
1%\'): p/q was coded for itg:q value as shown in the legend to the
right of (C). For clarity only a few of the Arnold tongues are shown

=0.5067 near the left hand side of the step am®w 1. For p>1, multiple phases have to fit in this interval.
=0.8696 with'?';=0.6383 in the middle of the step. The Hence, for highep there was at least one phadg,, (m
return map, where the next phagg,, was plotted vs the =1,... p) close to the edge—the resulting attractor was
previous phases,, was a single point¥,,¥,) in the ab- less stable against noise.

sence of noisé€Fig. 3). This point was the fixed point of the Next the amplitudeA was varied. FOA=0, when there
map. For nonzero nois® =104, and v/2m=0.8696, the was no periodic drive, the neuron was “mode locked” at
return map consisted of a cloud of points distributed aroundliscrete frequencies valueg27= p/q7, wherer~1.1 is the

the zero-noise point¥,V,). The phase fluctuated around average interspike interval of the neurdfy. (3) in Sec. Il.

the average value and the attractor was stable against nois&henA was nonzerop:q mode locking occurred in a range
However, forw/2m=0.7752, the phase took any value be- of frequency values around these discrete points. The regions
tween 0 and 1. Noise induced an extra spike on some cyclaa the w—A parameter space where the neuron wasmode

at a phase that was far from the fixed point of the dynamicslocked formed Arnold tongud$ig. 4A)] [31]. The width of

this resulted in large deviations of the spike phase. It took ahe p:q step—the frequency range for which mode locking
number of cycles for the neuron to return to the attractorwas obtained—generally increased withHowever, for low
Hence, the attractor was unstable against noise for the giveffequencies,w/27<1 and A<0.4 the width(and also the
noise strength. Note that in the deterministic case the stabikeuron’s firing rate varied nonmonotonically with ampli-

ity of the solution is given by the Lyapunov exponent. For alltude. This was further investigated by comparing the dynam-
the frequency values on the step the Lyapunov exponent wass on the 3:1 step foA=0.3 andA=0.4. ForA=0.4, the 3
negative and the solution was stap8.,35. In general, the spike phases on the 3:1 step were betwgeand 1 [Fig.
closer the neuron was to the edge of a step—a bifurcatiop(Ab)], and from almost any initial condition the neuron
point—the less stable the attractor was to intrinsic noise. Weonverged exponentially fast to the attradibig. 5Bb)]. In
observed that attractors for mode-locking at higheralues  contrast, forA=0.3, the spike phases took values between 0
were less stable when the step width was smaller. For thand 1[Fig. 5Ab)], and convergence was slow when the
piecewise constant periodic current considered in Fig. 2, theimulation was started at a spike phase far from the attractor
fixed point phases only took values betwegrand 1. The [Fig. 5Ba)].

unstable edges of the step corresponded to the valzesl The Arnold-tongue structure in the presence of noise was
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the left hand side edge there could only be extra spikes,
increasing(N), whereas near the right hand side there could
only be missing spikes, reducif@). Arnold tongues with
high p or q values were also unstable, however, these were
not resolved on the parameter grid and their absence could
not be observed in the figure. For higher noise levEBls,
=4x103, only theg=1 steps remained and their width
was much reduced compared with=0 [Fig. 4(Bb)].

The mode-locking regions were also determined as a
function of noise strength for a fixed amplitude= 0.4 [Fig.
4(C)]. The method for their construction was given in Sec. Il.
Briefly, the winding number foD =0 was determined nu-
merically yielding a value fop andg. Thatp value was used
to calculatec® [Eq. (5)]. When ¢P was proportional to
JD the grid point was considered part of tipeq Arnold
tongue. The width of the tongustep width decreased as a

(B) function of D, since more and more points close to the edge
became unstable. 1:1 mode locking was most stableDfor
, a b . . =102, the 1:1 step was still present, whereas other steps
10 o had become unstable or could not be resolved on the param-
10" t \\\ ‘\ - eter grid used for the simulations.
10° t ! \\
—, \ \\ \ i\
o _3 \

E@ 0T % \ \\\ \ IV. MODE-LOCKING TO A QUASIPERIODIC CURRENT

< w0t} 1 » \ N . . .

- é\ \\\\\ The behavior of neurons driven by a quasiperiodic current
100 F 1\ \ ] I \‘\ vy was examined using the analytical spike-time map derived
10° Ll : ' B for a piecewise constant current drive. The quasiperiodic

0 20 40 0 10 20 .o M . o
n n drive is intermediate between a periodic and a random

correlated drive. For a periodic drive, mode-locking regions
are organized in Arnold tongues, unlike the mode-locking
regions for a random drive. Hence, the question is whether
mode-locking regions for a quasiperiodic drive are organized
in Arnold tongues and how the reliability is related to the

FIG. 5. (A) Mode-locking steps folA=0.3. (@) The winding
number(N), (b) the spike phased,, ..., ¥, and(c) the number
of attractorgy as a function of frequency. For clarity only data for
p<3 andg=<4 are shown in b and c, respectively. Note thatbn
the spike phases for smad}/_27r t_ook values_betwgen 0 and_ 1. vainding numbefs).
Averages were over 3200 spike times after discarding a transient o The driving current was the sum of two periodic piece-
800.(B) Convergence to the attractor during 3:1 mode locking wasWise constant currents with periods . T. and amplitudes
slower for(a) A=0.3 compared witl{b) A=0.4. The spike phases P 3, 12 P

on the attractor werd;, ¥,, and¥;. The distance to the first A; andA,, respectwely. nge we usgjilzz andT2.=.2\/§.
one, A s, 1= than . 1— W1, Was plotted as a function of starting In ord_er to keepTl_/T2 irrational we varied the dr_|V|ng cur-
from different initial spike times;;, from the basin of attraction of rentl instead of eithei, or T, as was the case in the pre-
one of the three attractors. Hegg,,.; was the spike phase of the Ceding section.

(3n+1)th spike timets, ;. From top to bottorin the direction of For a drive only containing th€; component, steps in the
the arrow, t;,; was(a) 0.3, 0.7, 1.0, 1.3, 1.6, and 1.th) 0.5, 0.7, number of spikes per cycléN;,)=T,/r, as a function of
1.1, and 1.7. The last part of the trajectories was linear on a logvere obtainedFig. 6(Aa)]. Here = was the mean interspike
scale and corresponded to exponential convergence onto the attranterval. The steps were at rational valugd)=p,/q;,

tor. Other parameters wete=1.5, D=0, and in(B) T=3.32. hence the neuron produced spikes at phase¥,, ... W,

in q; cycles. The spike train was periodic with periggT ;.
studied[Fig. 4B)]. When the neuron remained on the attrac-The phase of spike timet was defined as y*
tor there was jitter in the spike times, but each spike that was- mod(t,T,)/T,. The same was true when only tfig com-
present in the zero-noise spike train did occur. Hence, thponent was preserifig. 6(Ab)], in that case the winding
average number of spikes per cycld), was unchanged and number wagN,)=T,/7=p,/q, and the phase was defined
equal top/q. When the value ofN) obtained in the simu- asg?=mod(,T,)/T,.
lations was withingzs; of p/q it was considered part of the When both components were present, there were steps
p:q Arnold tongue. For weak nois® =104, the Arnold-  with either a rational winding number with respect to
tongue structure was virtually identical to tBe=0 structure Ty, (N;)=p1/q, [Fig. 6(Aa)] or with respect taT,, (N,)
[Fig. 4Ba)]. Only points near the edge of the tongue were=p,/d, [Fig. 6(Ab)].
unstable, as noise induced transitions between attractors or The parameter regions in,@,) space with a fixed value
led to missing or extra spikes. Note that these extra or misssf p;/q,; or p,/g, were organized in Arnold tongug§ig.
ing spikes did not cancel out in the temporal average: NeaB(Ac)]. For A,=0, only theT,; mode locking was obtained.
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FIG. 6. Mode locking to a quasiperiodic drive yielded Arnold
tongues.(A) There were two sets of winding numbers) (N)
=T, /7 equal top,/q; for T; mode locking andb) T,/ equal to
p»/q, for T, mode locking, herer was the average interspike in-
terval. Three sets of parameters were considefgd; 0.25, A,
=0 (a, continuous ling A;=0, A,=0.25 (b, continuous ling
A;=0.125, A,=0.125(a,b, small circles The standard deviation
or and op, of the spike phasey'=mod(,T;) and 2
=mod(t,T,), respectively, is also shown. Hetds the spike time.
During 1:1 mode locking td'y, o<o7,, Whereas for 1:1 mode
locking toT,, o1,<o7s. (c) The winding number was determined
on a grid ofA, andl values @; was 0.4). The areas with the same
winding number were coded as follow&lack mode locking to
T4, from top to bottom, 2:1, 3:2, 1:1, and 12yoss hatchednode
locking to T, from top to bottom, 2:1 and 1:1striped quasiperi-
odic mode locking, (top) 1/7=1/T;+1/T, and (bottom 2/T,
—1/T,. (B),(C) In phase return maps, the phagg, ,; of the next
spike timet,,, ; was plotted vs the current phagg of t,. The scale
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were obtained with an average interspike intemr which
neither T, /7 nor T,/7 was rational. Howevery could be
expressed as

1ptopt ©
T 01Ty Q2 T2
with integer values, possibly negative, for, p,, q;, and
d,. In this case the neuron was mode locked to a linear
combination with rational coefficients of both periods—
quasiperiodic mode lockin@6]. In Fig. 6(Ac) two examples
are shown, r=1.1715, with 1#=1/T;+1/T, and 7
=1.5468, with 1#=2/T,—1/T,. Note that in the latter case
p, was negative.

The most prominent mode-locking regions were associ-
ated withp;=q;=1 (and p,=0) andp,=qg,=1 (and p;
=0). The spike trains fop;=q;=1 andp,=q,=1 and for
an intermediate current value, were further analyzed using
phase return mag$-igs. 6B),6(C)]. During 1:1 mode lock-
ing to a periodic drive, the neuron spiked at a fixed phase and
the interspike interval was constant and equal to the period
of the drive. As a result the phase return map, the phase of
the next spike time plotted vs the phase of current spike time,
consisted of only one point, the fixed point of the map. In-
trinsic noise introduced jitter in spike times, hence there was
jitter in the spike phases. The deviations of the spike phase
from the average spike phase were almost uncorrelated be-
tween consecutive cycles. The return map then consisted of a
spherical cloud of points centered around the fixed point.
During 1:1 mode-locking to th&; component in the quasi-
periodic case there was jitter in the spike phage even
without intrinsic noise. The jitter was due to thg-periodic
drive component. The points in the phase return map were on
a closed orbit, and the phases only took values between 0.58
and 0.79Fig. 6(Ba)]. However, the return map ef formed
an open orbit, and the phase had values between 0 and 1
[Fig. 6(Ca)]. The situation for 1:1 mode locking to thB,
component was similar, the phase return map with respect to
T, was a closed orbifFig. 6(Cc)], and now they! return
map was an open orliFig. 6(Bc)]. We took a current value
between the 1.1, and 1:1T, mode-locking steps, that was
not part of a step with a width of more than 10 In that
case, the orbits were discontinuous with part of the orbit
missing[Figs. §Bb) and §Chb)]. The spike trains had a com-
plicated structure; we could not establish whether they were
aperiodic or chaotic or whether the winding number was ir-
rational.

The stability of 1:1T,; mode locking against noise was
investigated Figs. 1A),7(B)]. Three values for the driving

is the same for all graphs and is shown in Ca. The phase wag, . ront were used,=0.99 on the left hand side of the step,

calculated with respect t@B) T, and (C) T,. The amplitude was
A,=A,=0.125 and(a) 1=1.17 (p,=q,=1); (b) I=1.10(no ra-
tional winding number was found (iii) 1=1.09 (p,=q,=1).
Other parameterd:; =2, T,=2./2. Averages were ovéAa), (Ab)
1600 spikes after discarding the first 400; a@d) 3200 spikes
after discarding the first 800.

As A, was increased, mode locking 19 became unstable
for largeq4, and in some current rangps/g, mode locking
was obtained instead. When bdth andA, were large, steps

I=1.12 in the middle of the step and 1.26 on the right hand
side of the step. The phase return map consisted of closed
orbits. The center of the orbits varied with the value of the
current, from close to 1 on the left hand sideston the right
hand side[Fig. 7(Ba)]. The interspike-interval return map
also consisted of a closed orlpEig. 7(Aa)]. The orbits for
different current values were arranged concentrically, the po-
sition of the center did not shift since the average ISI had to
remain the same, however, the diameter of the orbit did vary.
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FIG. 7. (A), (C) interspike-interval andB) spike-phase return maps for mode locking to a quasiperiodic cur@h{B) 1:1 mode
locking to T for (a) three current valuegl) 1=0.99,(2) | =1.12, and3) | =1.26 without noise=0); (b) I =1.12 andD =10 * and(c)
1=0.99, D=10 * The amplitudes werd,;=0.4 andA,=0.05. The phase was calculated with respecttoThe scale inAc) is different
from that in(Aa) and(Ab). The “donut” in the lower left hand side corner corresponds to the zero-noise(@jbit (Aa). (C) Quasiperiodic
mode locking, the average interspike interval was=11/T,+ 1/T,. Parameters wer@,1) | =1.40,(2) 1=1.46, and(3) | =1.515 withD
=0; (b) 1=1.46, andD=10"*; (c) I=1.40 andD=10 *. The amplitudes weré;=0.4 andA,=0.4. Arrows in(Ac), (Bc), and (Cc)
indicate the initial noise-induced deviation from the attractor; the arrow€ah and (Cb) indicate a sharp excursion in the return map.

The attractor for the current value in the middle of the step

was stable against noise. The return maps consisted of a (A)
cloud of points distributed around the zero-noise orbit. The
attractor forl =0.99 was unstable against noise. Noise could 4t
prevent spikes from happening, leading to missing spikes
and an interspike interval that was approximately two cycles.
The resulting deviation in spike phase decayed back to zero
over the course of a few cycles. Tiig component acted as 2y
a deterministic noise source, the jitter basedpgrng,; mode
locking 0PV was approximately the sum of two terms,

ISI

(U(pl))2=a1D+a2A2, ) 0.8 1.0 1.2I 1.4 16
. . B
wherea; anda, were proportionality constants. Hence, the B) 2/T,~2/T, 3/T,-3/T, 4/T —4/T,
T, component brought the neuron closer to a bifurcation 343 2.30 173

point, and reduced the stability against noise.

Quasiperiodic mode locking was investigated using phase
and interspike-interval return magds&ig. 7(C)]. The 1k
=1/T,+1/T, mode-locking step was considered, three cur-
rent values were usedl=1.40 on the left hand side of the 84095 oo 2% 100 1110 238 1.238
step,| = 1.46 in the middle of the step and 1.515 on the right I I I
hand. side of the step. The phase return.maﬂ/bhnq v FIG. 8. Stability against noise of mode locking to a quasiperi-
consisted of an open orhfinot shown. The interspike inter- ¢ piecewise constant current) The average interspike interval
val return map was a closed orbit with a complex sH&p€. (1)) is plotted as a function of average driving currénior D
7(Ca]. It had a remarkable feature as indicated by the arrows- g andp=10"2. The most stable mode-locking ratios, expressed
in Figs. 1Ca) and 1Cb). We made sure that the same featureas 1/=(p, /q,) /T, +(p,/q,) 1/T,, are indicated in the grapkB)
was also obtained by direct integration of EG). In the  Closeup of a few smaller mode-locking steps Eb+=0. The mode-
presence of noise, the orbit in the middle of the step wasocking ratios are given in the graph. Other parameters wEre,
stable[Fig. 7(Cb)], whereas the orbit near the edge of the=2, T,=2.2, andA;=A,=0.2. Averages were over 3200 spikes
step was unstablgFig. 7(Cco)]. after discarding a transient of 800.
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For A;=A,=0.4 or 0.2, quasiperiodic mode-locking tractors with the same winding number. In model simulations
steps were also found for other ratios, including multiples ofwe found that duringp:q mode locking there werg attrac-
1T, —1T5:  1lr=n(1/T,—1T,) for n=2, 3,... (Fig. tors. The attractor was most stable against noise during 1:1
8). For these mode-locking steps we found only one attractomode locking, when there was only one attractor, and less
and the ISI return maps did not form closed orbits. Mode-reliable outside 1:1 mode locking. Hence, these theoretical
locking steps for X#=3(2/T;—1/T,) and 3(1/T,+1/T,) results predict a reliability resonance for a periodic drive that
were smaller than the current grid X2L0™ %) used in our is absent for a random drive. The reliability of pyramidal
simulations. However, wheA, was much smaller thaA,, cells and interneurons in rat prefrontal cortical slices has
for instance,A;=0.4 andA,=0.05, these steps could be been studied experimentally with sinusoidal current injection
resolved. The dynamics had two attractors and the ISI returaver a range of frequencig23]. Pyramidal cells mode
maps didnot form closed orbits. locked in the 5-20 Hz range, whereas interneurons mode-

The noise stability of the mode-locking steps was invesdocked in the 5-50 Hz rand@3]. Spike-time reliability was
tigated by comparing the ISI vs current curve for zero noisealways highest during 1:1 mode lockifg3,25.
with that for D=10"2 [Fig. 8A)]. Only the 1:1 mode- A quasiperiodic drive is intermediate between a periodic
locking steps toT,,T, and the step with =1/T,+1/T,  and random fluctuating drive since it is not periodic but it
remained in the presence of noise. On these mode-lockingoes have deterministic structure. Here we report that the
steps there was only one attractor with an ISI return map thagifurcation structure of a neuron driven by a quasiperiodic
formed a closed orbit. drive [36] is similar to that for a periodically driven neuron.

Thus, there were mode-locked solutions with a rationaln particular, the mode-locking regions were organized in
winding number with respect to eith@; or T, or a rational  Arnold tongues. The widest steps corresponded to 1:1 mode
combination thereof. In the former case, the non-modelocking to either one of the two components of the drive or
locked drive component generated deterministic jitter in thequasiperiodic mode locking with small values fipr andqp.
spike times. Steps with low values pf andq; (p, andq,)  On these steps there was only one attractor and the ISI return
were more stable against intrinsic noise, and could also renap formed a closed orbit. These steps were the most stable
main mode locked for a larger amplitude, (A;). In that against noise and hence yielded the most reliable discharge.
case there were stifj; (q,) attractors. The stability of these These results show that reliability is closely correlated to the
attractors to intrinsic noise was reduced since the determirlumber of attractors and the shape of return maps.
istic jitter would bring the attractor closer to a bifurcation
point. For quasiperiodic mode locking there also could be B. Reliability and Lyapunov exponents

multiple attrgctors. Howe_ver, the correspon_ding ;teps WEre The zero-noise stability of mode-locked solutions of peri-
small. We did not establish a general relationship betweerddically driven integrate-and-fire neurons was previously

the values ofg,; and g, and the number of attractors that o fL
would be observed. For most of the examples studied heres,tUdIecj In terms of Lyapunov exponened, 38,

there was only one attractor for quasiperiodic mode locking. 1 n I+ f(tes )
The steps with an ISI return map that formed a closed orbit A=—1+Im — 2 In|———p——
were most stable. However, we did not establish whether this noe tne1 Tl kS0 [ m 1T+ ()
observation holds in general.

)

heret, was thekth spike time on the attractol, was the

V. DISCUSSION driving current, and (t) was the fluctuating driving current.
) - ) ] All periodic mode-locked solutions had a negative Lyapunov
A. Noise stability of attractors and bifurcation structure exponent and were stab[@1,35. The periodic solutions

The bifurcation structure explained the differences in re-with a low g value were more stable since the Lyapunov
liability between neurons driven by random and periodicexponent was more negativeee Fig. 2 in Ref[31]). When
fluctuating current§26]. For the random fluctuating drive we the neuron remained close to the attractor in the presence of
found that there was one stable attradi®6]. We conjec- intrinsic noise, the spike-time jitter was proportional to the
tured that in general neurons driven by a random fluctuatingioise standard deviatiogD. The proportionality constant
current have only one stable attracf@6]. Furthermore, we depended on the Lyapunov exponent: a more negative the
conjectured that for any given stimulus parameter the neurohyapunov coefficient resulted in a smaller proportionality
was close to a bifurcation point for which only a few spike constant, hence, less spike-time jitter. A detailed derivation is
times changed discontinuoudlg6]. Only those spike times, in preparation 32].
and perhaps a few spike times immediately following a bi- Stronger noise induced transitions between different at-
furcation spike time are unreliable. Hence, for a randomtractors, or missing or extra spikes. The occurrence of these
drive, the overall reliability was reduced, but was still high deviations from the attractor depended on the value of the
for most parameter values. Lyapunov exponent and the distance to a bifurcation point.

When a periodic drive was injected into the model neu-As mentioned above, Lyapunov exponents characterized how
ron, mode locking could occui31,37—47. During mode fast a deviation from an attractor decayed to zero and deter-
locking the neuron producep spikes perg cycles and the mined the amplitude of noise-induced fluctuations around the
spike train would repeat itself eagrcycles(herep andgare  zero-noise voltage trace. Deviations from attractors could oc-
positive integers Hence, there could be multiple stable at- cur when this amplitude was large enough to reach a bifur-
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cation point. The Lyapunov exponent depended on the valuBleurons also display subthreshold membrane potential oscil-
of the driving currenff (t,) at the spike times on the attractor lations due to active currenf$0-52. The oscillation fre-
[Eq. (8)]. Here, piecewise constant periodic currents werequency depended on the type of neuf@8,53. How does
used and spikes occurred at a phase betweamd 1(except the bifurcation structure depend on these intrinsic oscilla-
for the parameters values used in Fig. Bence,f(t,) al- tions? We plan to address these and other issues in future
ways had the same value and the Lyapunov exponent onhyork.

depended on the average interspike interval. As a result we

could approximately delineate the effect of the bifurcation ACKNOWLEDGMENTS

structure on the reliability of neural spike trains from that of _

the variation off(t). The result is that both the Lyapunov _ 1Nis work was funded by the Sloan-Swartz Center for
exponent and the distance to the bifurcation points are im] heoretical Neurobiology at the Salk Institute. | thank Jack
portant determinants of the reliabiliythe value of the Cowan, Jean-Marc Fellous, Jorge JoBerry Sejnowski, and
Lyapunov exponent itself does not predict reliability in ex-Peter Thomas for discussions and useful suggestions. | thank
periment, since transitions between attractors occur at”€t€r Thomas also for comments that have improved the pre-

physiological noise levelg26]. sentation of the paper.

C. Asymptotic attractor stability and reliability APPENDIX

In experiments reliability is assessed by presenting the o clarity, the notation in this appendix differs from that
same stimulus across multiple trials. In model simulationsip, the main text as follows. The constant depolarizing current
this procedure corresponds to injecting the same input stimy- g flyctuating currerit(t) are combined into a fluctuating
lus each time with an independent realization of the intrinsic,rent denoted bi(t). The two current values of the piece-
noise (trial). The attractor reliabilityR, is defined as the \ise constant current will be denoted by subscripts 0 and 1,
stability of the attractor against noise and is proportional toy,4 the two components of the quasiperiodic current will be
the inverse of the number o_f distinct spikg train; obtainedgicated by superscripts andB. In the following four sec-
across a large number of trial7]. Two spike trains are  ions the analytical spike-time maps used in the numerical
distinct when there is at least one spike time that is muchyiyjations are derived for the periodic piecewise constant
further than\/_ﬁ from any spike time in the other spike train grive without and with noise, and for the quasiperiodic
(D is the variance of the intrinsic nolsé/Vhen the neuron  piecewise constant drive without and with noise, respec-
remains on one attractor, tispike-time jitterin thenth spike tjyely.
time (n=1,2, . ..)across many trials is proportional tD
andR,=1 [32]. Noise can induce transitions between differ-
ent attractors, or lead to missing or extra spikes. Distinct
spike trains are then obtained across different trials, reliabil- The neuron is driven by a piecewise constant curtéit
ity is reduced and the spike-time jitter is not proportional towith period T, 1(t)=1, when mod{,T)<T, and it is |,
JD anymore. In this paper, the asymptotic noise stability ofwhen mod¢,T)=T,. [Note that in the notation of the main
attractors was determined based on one long trial with betext, lo=1—A, 1;=1+A, andT;=T/2]
tween 2000 and 10 000 spikes. When there are no transitions The solution to
between attractors, missing or extra spikes, shie-phase
jitter is proportional toyD andR,=1. This procedure can d_V: —V+I1(1)
underestimate the reliability compared with that obtained for dt '
multiple short trials since transitions between attractors dur-
ing a long trial may not occur on short trials. However, thiswith initial condition V(t;)=0 is
only affects the edges of mode-locking steps and the quali-
tative behavior of the reliability was the san@omparison V(ty,)=e '2[h(t,)—h(t;)],
not shown).

Neuron driven by a periodic piecewise constant current

where
D. Future work

Neurons are more complex than the integrate-and-fire h(t) = td o)
model neuron studied here. They contain many different = 0 s €l(s)
membrane currenist8]. For instance, in model simulations

using cells with a slow calcium-dependent potassium current N (=T T -

(model as in Ref[49]) convergence to the attractor could :gl e Jo ds€l(s)+e fods €l(s)
take up to one second. During that period the output spike

train depended on the voltage and other internal variables 1—eNT

such as calcium concentration at stimulus onset. Hence, dur- =a - +eNTr(7),

ing the transient the discharge might be unreliable. However, 1-e

once the attractor was reached it was stable. How do these
slow currents influence reliability undém vivo conditions? ~ with 7=t—NT,
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r where y is Gaussian white noise with mean zero and unit
r(r)=J0ds el(s)=lo(e’™=1), 7<T, variance, and

_ T_al
—aytly(e—e), =T, N T (A1)

and

Here, we assume that the noise trajecté(ty) leading toy at
t, does not lead to a threshold crossing priottoPrelimi-
nary simulations using direct integration yield a spike-time
variance similar to that obtained via the algorithm discussed

a1= | 0(eT1_ 1),

a=a1+|1(eT—eT1).

oo o here.
A spike is generated whevi(t,)=1, yieldin _ S
P g (t) y g The resulting equation is squared to remove the square
h(ty)—h(ty) =e'2; root,
usingt;=N;T+ 7, andt,=N,T+ 7,, we get D
gty=Ng 1 2= Nz 2 g [h(tz)—h(tl)—et2]2=E(eZt2—62‘1)X2,
NoT+7o— % ANy T aNoTy 4 aNoT AN T
ez "= 1_eT(e 1 —eM2)+e™2'r(rm)—et'r(r). yielding,
2
Combining all the terms containing, on the left hand side B _ ,
yields 1—eT(e ANT_ 1) +r(7p)—e ANTr (1) —em
2=08, + —ANT . 2
ee=p.te Ye _Dx (272 g2~ 28NT)
with 2
1 which is equivalent to
B+:IO_1 1_eT+IO ! X2
(7:X+ 8.)2=—3—(x?— 21 24NT),
— 1 T
B—_|1_1 1—e —ethe wherex=e"2, n,=19—1, n_=1,—1, and
and o —ANT ~ANT
5+=1_eT(e —D—e " r(r)—lo,
! +
’Y‘F Io_l - 1 T r(Tl) 1 o
5_=l_eT(e‘ANT—1)—e‘ANTr(71)+a1—IleTl.
1 a
y-= - +r(7y) |, : : .
=1 1-¢" ! ] The result is a quadratic equationn

2 2

whereAN=N,—N;. The solution to they, equation has to

X Dx“ ,. _

satisfy 0<,< T, and the solution to the_ equation has to ( 7% — - X2+ 28, pux+| 8L+ Tele 2T =ax?
satisfy T;<7,<T. All different valuesAN=0,1, ... were
tried until a solution was found. +2bx+c=0, (A2)

Neuron with intrinsic noise driven by a periodic piecewise with a solution

constant current
In the presence of intrinsic noise, the dynamics is X=— gié’bz—ac (A3)
i - VIO FE, The resulting algorithm is as follows. Generate a Gaussian

deviate y, and calculater(r;) and #.. Calculate
with (£(t))=0, (&(t)£(t"))=Dé&(t—t’). The equation for 6+, a, b, andc for a givenAN and solve the quadratic

the next spike time,, starting fromV(t;)=0, is equation. Iterate oveAN=0,1, ... until a solution is ob-
tained for the correct sign of that satisfies & 7,<T, for
V(ty)=e "7 h(t,)—h(t))]+Ax=1, the 6, equationor T;<7,<T for the §_ equation.
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Neuron driven by a quasiperiodic piecewise constant current

where ANA=N5—N7,

PHYSICAL REVIEW E 65 041913

A=NSTE—NSTA,  A;=NPT®

The neuron is driven by a sum of two periodic piecewise— N1T?, A,=N BTB N{TA and 5= 75— A. Combining the

constant currents,(t)=14(t) +18(t), with I*=13 when 0

<mod(t, TA)<T4 and I*=1% when TAsmod(t,TA)<TA,

likewise, IB=15 when 0<mod(t,T8)<T? andI®=1 when

T?smod(t,TB)<TB. (In the notation of the main texl,é
=112—= Ay, 19=1124 A, 1§=112—A,, 18=112+A,, T}
=T,/2, andT>=T,/2)

Starting fromV(t;) =0, the equation for the next spike

time t, is again given by

V(ty)=e "2[h(ty) —h(t)]=1. (A4)

However, nowh(t) is the sum of two terms,

h(t)= fotds el(s)=hA(t) +hB(t),

with
_eNATA A
hA(t)=aAﬁ+eN T rA(TA),
—e
_eNBTB BB
hB(t)=a® 5 +eNTrB(7B),
—e
and

A =157 -1), A<T}
—adh 18" —eT), A=TA
rB(®)=18e"-1), B<TB
=a§‘+l?(eTB—eT?), TBBTB,
aA=a'1A+I?(eTA—eT/;),
aB=a?+|?(eTB—eT?),
h=16em-1),
of=18(eT-1),
where t=NATA+ 7A=NBTB+ 7B,
=N{T + 70 =NSTS+ 70 and t,=
Eqg. (A4) reads

With the subst|tut|ontl
NOTo+ 5 =N3T5+ 75,

T+ ANATA

e M [hA(t,) — hA(ty) +

aA

h8(t2) —h®(ty)]
A (1= + N T A — A7)
B

o
5 (et1—e"2) +etarB(75-A)

—ebirB(ry),

e

C1—eT

+

terms that contalrefz yields

A
e2(nh+n2)+ o+ 5L+ 68=0,

with
7y =eNT5- 1),
=TI 1),
7e=e g
778,=eA2*AI?,
and
ﬁzeANATA(_lg\)’
P eANATA( | eTf)
B =eb2(—1B
58 =e?2(af—18eM)
o= 1f:TA<1—eANATA>—rA<T?>+ : “Z s(e’1—e'?)
—eburB(7D).

For each value oN5 andNZ, there are four possible solu-
tions fore’é. The sign of theA drive at timet, is denoted by
S* and the sign of thd drive is S®. Each combination of
Sh=+ and S®==+ could be a solution. The real solution
needs to satisfy, € 7, <T% for S=+ or T{<7,<TA for
Sh=—, and 0=, <TB for SP=+ or Tl\7-2<TB for SB
=—, where, as befores5=75—A. The algorithm uses dif-
ferent values oN% andN35 until a solution that satisfies the
constraints is found. The tried valubg andN5 are ordered
such that consecutive values bfmax(N5 TA N5TB) in-
crease monotonically.

Neuron with intrinsic noise driven by a quasiperiodic
piecewise constant current

In the presence of noise EGA4) reads

V(tz)=e Z[h(ty) —h(t)]+rx=1,

where\ is given by Eq.(A1). Usingt,=N{T{+ 7} andt,
=N5T5+ 75, we obtain
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e‘NfTA[h(tz)—h(tl)]—eé\””ATA with solution
D A ATAT_ a27% b 15
+ E(exp[272+2AN T —e“"1)x=0, (A5) x=—ai5\/b —ac,
this is rewritten as where,
D o oaNATA oA 2
XCy+Co+ 5(X e —e)x=0,  (A6) a=C2— Dx E2ANATA
1 2 ’
with x=e", C,= 7"+ 75, andC,= 5+ 6" + 6% with the
7’s and §'s defined as in the preceding sectionis one of b=C,C,,
the two solutions of the quadratic equation,
Dx? 2
(XCy+ Co)? =5 (xe?N' T 27h), c=C3+ ox-e.

rewritten as . A B . . .
Different values folN; andN; are tried as described in the

ax?+2bx+c=0, preceding section.
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