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Precision and reliability of periodically and quasiperiodically driven integrate-and-fire neurons

P. H. E. Tiesinga
Sloan-Swartz Center for Theoretical Neurobiology and Computational Neurobiology Laboratory, Salk Institute,
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~Received 17 October 2001; published 2 April 2002!

Neurons in the brain communicate via trains of all-or-none electric events known as spikes. How the brain
encodes information using spikes—the neural code—remains elusive. Here the robustness against noise of
stimulus-induced neural spike trains is studied in terms of attractors and bifurcations. The dynamics of model
neurons converges after a transient onto an attractor yielding a reproducible sequence of spike times. At a
bifurcation point the spike times on the attractor change discontinuously when a parameter is varied. Reliabil-
ity, the stability of the attractor against noise, is reduced when the neuron operates close to a bifurcation point.
We determined using analytical spike-time maps the attractor and bifurcation structure of an integrate-and-fire
model neuron driven by a periodic or a quasiperiodic piecewise constant current and investigated the stability
of attractors against noise. The integrate-and-fire model neuron became mode locked to the periodic current
with a rational winding numberp/q and producedp spikes perq cycles. There wereq attractors.p:q mode-
locking regions formed Arnold tongues. In the model, reliability was the highest during 1:1 mode locking when
there was only one attractor, as was also observed in recent experiments. The quasiperiodically driven neuron
mode locked to either one of the two drive periods, or to a linear combination of both of them. Mode-locking
regions were organized in Arnold tongues and reliability was again highest when there was only one attractor.
These results show that neuronal reliability in response to the rhythmic drive generated by synchronized
networks of neurons is profoundly influenced by the location of the Arnold tongues in parameter space.

DOI: 10.1103/PhysRevE.65.041913 PACS number~s!: 87.19.La, 87.19.Dd, 87.17.Aa
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I. INTRODUCTION

Although spike trains in the cerebral cortex are high
variable ~for a review see@1#!, neurons can fire with high
temporal precision and reliabilityin vitro @2–8#. Precision is
defined here as the inverse of the temporal jitter in the sp
time and reliability as the reproducibility of spikes acro
different presentations of the same stimulus~trials!.
Information-theoretical analyses of the neuronal spike tra
in the lateral geniculate nucleus indicate that precise sp
times contain more information about the stimulus than
ing rate alone@9,10#. It is unknown how these precise spik
times are used in the cortex@1,11–15#.

If a feature is present in the spike-train response to
stimulus across multiple trials it can form the basis of a n
ronal code. Spike-time reliability is a measure for the rep
ducibility of individual spike times across trials@16#. Neu-
rons produce a reliable sequence of spike times in resp
to some inputs and respond unreliably to others. In thein
vitro slice, neurons fire reliably when injected with a rando
current containing high frequency components, but they
unreliably when driven with a low pass or constant curr
@16–22#. Sinusoidally driven neurons show resonances in
reliability as a function of drive frequency@23–25#.

Recently, we proposed a framework for understanding
reliability of neuronal discharge in terms of two mathema
cal concepts, attractor and bifurcation@26#. We briefly re-
view these previous results to set the stage for the iss
addressed in this paper. Examples of attractors of
integrate-and-fire~IAF! model neuron are shown in Fig. 1
The model neuron was driven by a quasiperiodic curr
consisting of the sum of two sinusoids with an irrational ra
between their frequencies. There were two attractors. F
one set of initial voltages, the voltage converged to the fi
1063-651X/2002/65~4!/041913~14!/$20.00 65 0419
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attractor@Fig. 1~Aa!# and from a different set it converged t
the second attractor@Fig. 1~Ab!#. Each attractor corre-
sponded to a distinct sequence of spike times@Fig. 1~Ac!#. In
the presence of weak noise the neuron also converged to
attractor, but the voltage fluctuated around the zero no
value. When the neuron remained on the attractor it produ
the same sequence of spike times on each trial and the s
time variance across trials was proportional to the noise v
ance@26#. The driving stimulus can be parametrized in term
of, for instance, the amplitude, the frequency, and the me
A bifurcation point is a stimulus parameter value at whi
the attractor voltage and output spike train change disc
tinuously when the parameter is varied by a small amou
Noise sensitivity of the attractor~hence reliability! was con-
nected to the presence of bifurcations. For parameters c
to a bifurcation point, noise can induce a deviation from t
attractor so that different spike trains are obtained acr
different trials, reducing reliability. Two possible deviation
are shown in Fig. 1~Bb!. Two spike trains were considere
different when at least one spike time in the first spike tr
differed by more than the typical jitter from all the spik
times in the second spike train@27# ~see also Sec. V C!. The
above framework makes it possible to assess the reliab
for many different noise strengths by varying stimulus p
rameters and determining bifurcation points.

The reliability of the neuronal spike-train response to
random fluctuating current is different compared with t
reliability in response to a periodic driving current. The
differences are related to the bifurcation structure: mo
locking to periodic drives leads to Arnold tongues that a
absent for a random fluctuating drive. A quasiperiodic dr
is not periodic but nonetheless has long time correlations
is intermediate between a periodic and random fluctua
drive. Here we compare the bifurcation structure of
©2002 The American Physical Society13-1
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P. H. E. TIESINGA PHYSICAL REVIEW E 65 041913
integrate-and-fire model neuron driven by a periodic pie
wise constant current with that of a neuron driven by a q
siperiodic piecewise constant current. The numerical ca
lation was speeded up significantly since it was possible
derive an analytical spike-time map representing the dyn
ics of neurons driven by piecewise constant currents. We
for both periodic and quasiperiodic drives that~1! mode-
locking regions are organized in Arnold tongues and~2! re-
liability is highest when there is only one attractor.

FIG. 1. Attractors of neurons driven by a quasiperiodic curre
~A! The voltage was plotted as a function of time starting fro
different initial voltage valuesVinit . When the voltage reaches 1,
spike is emitted and the voltage is reset to 0. The dynamics c
verged to either of two different attractors,~a! and~b!, respectively.
The attractors remained distinct for long times. However, we
not establish whether this holds for arbitrarily long times.~c! The
corresponding spike times (x ordinate! as a function ofVinit (y
ordinate!. The two attractors are labeled in the graph by attr1 a
attr2, respectively. Arrows indicate one of the two boundaries
tween the basins of attraction.~B! Dynamics in the presence o
noise.~a! 10 voltage traces and~b! 1000 spike trains~trials! each
starting atVinit50 but with a different realization of the noise. Th
neuron could remain on one attractor, or~1! deviate from it during
a few spike times, or~2! make a transition to the other attracto
Spike trains were ordered on the value of the first spike time a
t515. Arrows in ~a! indicate the voltage curves corresponding
the two possible spike times in~b,1!.
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II. METHODS

A. Simulation algorithm

The membrane potentialV of an integrate-and-fire mode
neuron driven by a fluctuating current satisfied@28#,

dV

dt
52V1I 1 f ~ t !1j~ t !, ~1!

whereI was a time-independent driving current,f (t) was a
fluctuating current, andj was a white noise current, with
zero mean and varianceD, that represented the effects o
intrinsic noise. When the voltageV reached threshold
V(t2)51, a spike was emitted and the voltage was rese
zero,V(t1)50. Heret2 was the limit tot from below, and
t1 was the limit tot from above. The first term on the righ
hand side of Eq.~1! represented the decay of the voltage
the resting membrane potential,V50. Dimensionless units
were used, one voltage unit corresponded to the dista
between the resting membrane potential and action pote
threshold,'20 mV @28#; one time unit corresponded to th
membrane time constant, approximately equal to 10–40
@28#. With the membrane capacitance taken equal
1 m F/cm2, a driving current equal to 1 corresponds
0.5–2 mA/cm2.

A periodic or quasiperiodic piecewise constant curre
f (t) was injected into the neuron. The periodic current w
equal to f (t)52A when 0<mod(t,T),T/2 and f (t)5A
otherwise. HereA was the amplitude of the drive,T was the
period, and the frequency wasv52p/T. The quasiperiodic
current consisted of the sum of two periodic currents, w
periodsT1 and T2 and a relative phaseDf, f (t)5A1I 1(t
1Df)1A2I 2(t). HereA1 andA2 were the drive amplitudes
and v152p/T1 , v252p/T2 were the drive frequencies
I 1(t)521 when 0<mod(t,T1),T1/2 and 1, otherwise.
I 2(t)521 when 0<mod(t,T2),T2/2 and 1, otherwise. In
the simulations presented hereDf50.

The voltage of the integrate-and-fire model neuron w
integrated analytically@Eq. ~1!#. When the last spike oc
curred att1 , V(t1

1)50, the voltage at a later time, but be
fore the next spike, was

V~ tut1!5I ~12e2(t2t1)!1e2tE
t1

t

ds es@ f ~s!1j~s!#. ~2!

The next spike timet2 was the smallest solution of the equ
tion V(t2ut1)51.

The equation for periodic and quasiperiodic piecew
constant driving current was analytically inverted to yield
spike-time mapM. The map determined the next spike tim
tn11 as a function of the previous spike timetn , tn11
5M (tn). Details of the calculation are given in the Appe
dix. Simulations based on iteration of the spike-time m
were up to two orders of magnitude faster than direct in
gration and yielded spike times that were accurate to m
chine precision for zero noise and accurate to the square
of machine precision for simulations with noise. The acc
racy of the spike-time map for zero noise was check
against results from direct integration using fourth-ord
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PRECISION AND RELIABILITY OF PERIODICALLY . . . PHYSICAL REVIEW E65 041913
Runge-Kutta @29#. Threshold crossings~the spike times!
were determined by linear interpolation. Note that for li
early interpolated spike times a second-order Runge-K
would also have been adequate@30#.

B. Spike-time statistics

The maptn115M (tn) was iterated starting from the ini
tial spike timet05t init to obtain 2000–10 000 spike times. I
most cases we tookt init50. The first 20% of the spike time
were discarded as a transient, the remainingNs
51600–8000 were used for further analysis as described
low. The periodically driven noiseless integrate-and-fire n
ron converged after a transient onto a periodic attractor.
mean interspike interval~ISI! was,

t5
1

Ns21 (
n51

Ns21

tn , ~3!

whereNs was the number of spikes in the simulation ru
and tn5tn112tn . The winding number, defined as the a
erage number of spikes per cycle,^N&5T/t, was approxi-
mately equal to a fractionp/q, hereT was the period.

The neuron emittedp spikes inq cycles, and the spike
train repeated itself afterq cycles. The spike phase of spik
time tn wascn5mod(tn ,T)/T. On the attractor thecn time
series was periodic with periodp, cm1p5cm12p5•••

5Cm . Hence the neuron spiked only atp different phases,

Cm5
p

Ns
(
n50

Ns /p21

cm1np , ~4!

for m51, . . . ,p. In the presence of noise there was spik
phase jitter, the standard deviation of the spike phase w

s (p)5A1

p (
m51

p

~sm
(p)!2,

~sm
(p)!25

p

Ns
(
n50

Ns /p21

cm1np
2 2Cm

2 . ~5!

In Eqs.~4! and~5! it was assumed that the number of spik
Ns is a multiple ofp, during the calculation the appropria
changes were made when this was not the case. Note thp
needed to be estimated from̂N& prior to calculatings (p).

For a quasiperiodic drive, there were two periods. T
spike phase with respect toT1 wascn

15mod(tn ,T1)/T1 and
with respect toT2 it wascn

25mod(tn ,T2)/T2. The mean and
variance of the phase were defined in analogy to Eqs.~4!
and ~5!.

C. Arnold tongues

Regions in parameter space with the same wind
number ^N&5p/q formed Arnold tongues. The Arnold
tongue structure was determined for a number of param
combinations, specifically, (v,A), (A2 ,I ), and (v,D).
A two-dimensional grid (xi ,yj ) was constructed, herei
51, . . . ,Nx ; j 51, . . . ,Ny ; and x and y were
04191
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v, A, A2 , I , or D. The grid was specified by the startin
point xmin , end pointxmax, and the number of grid points
Nx . The same notation holds fory and is not repeated her
and in what follows. We either used a linear grid,

xi5xmin1
i 21

Nx21
~xmax2xmin!,

i 51, . . . ,Nx , or a logarithmic grid,

xi5expF l x,min1
i 21

Nx21
~ l x,max2 l x,min!G ,

herei 51, . . . ,Nx , l x,min5 ln xmin, and l x,max5 ln xmax.
The Arnold-tongue structure was determined based on

winding number calculated from 1600–8000 spike tim
Grid points (v i ,Aj ) or (A2,i ,I j ) with a winding number sat-
isfying u^N&2p/qu,1/400 were considered part of thep:q
Arnold tongue. Alternatively, for zero noise, Arnold Tongu
could also be determined by simultaneously solving a la
set of algebraic equations as in Ref.@31#. Here we use a brute
force approach made feasible by the computationally e
cient implementation of the spike-time map.

A different procedure was used for the construction in
(v,D) plane.D j was taken on a logarithmic grid. Thep:q
values for a givenv were determined forD50. Thesep
values were then used to calculates (p) as a function ofD for
nonzeroD. For smallD values,s (p)}AD @32#. The firstNf
57 – 10 nonzeroD j values in the simulation run were
used to fith j5 ln s(p)(Dj) to lna11a2 ln Dj , herea1 anda2
were fitting parameters. The fit was accepted when

1

Nf
(
j 51

Nf

~h j2 ln a12a2 ln D j !
2,0.1,

and 0.45,a2,0.55. A grid point (v i ,D j ), with j .Nf , was
part of thep:q Arnold tongue when

s (p)~D j !2a1D j
a2

s (p)~D j !
,0.10.

Determining the Arnold-tongue structure is equivalent
finding the bifurcations for which the winding numbe
changes discontinuously. A method for determining bifurc
tions in the presence of noise was recently presented in R
@33,34#. It involved constructing the phase transitio
matrix—the probability distribution of the phase of the ne
spike time conditional on the phase of the previous sp
time—and performing a spectral analysis on it.

III. MODE LOCKING TO PERIODIC DRIVES

The dynamical equations for the IAF model neuron we
analytically integrated to produce a spike-time map that p
dicted the next spike time given the previous spike time. T
derivation and numerical implementation of the map is d
scribed in Sec. II; further details are in the Appendix. T
map was iterated starting from an initial spike timet init50.
The amplitudeA was 0.4 and the drive frequencyv/2p
3-3
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P. H. E. TIESINGA PHYSICAL REVIEW E 65 041913
51/T was varied, hereT was the drive period~cycle length!.
For a given frequencyv the neuron converged, after a bri
transient, on to a periodic attractor and was then m
locked to the drive. The resulting spike train was perio
with a period equal toq drive cycles, during whichp spikes
were emitted. The average interspike interval wasqT/p. The
winding number^N& is the average number of spikes p
drive cycle; during mode locking it was rational and equal
p/q, wherep andq were positive integers.

For a constant driving currentI 51.5 andA50, the aver-
age interspike interval was approximately 1.1. For a fin
amplitude,A50.4, the neuron was 1:1 mode locked wh
the period was close to 1.1. This led to a step of cons
winding number,p/q51, in the^N& versusv characteristic
@Fig. 2~Aa!#. There were also steps for other rational windi
numbers and thêN&-v graph had the appearance of a sta
case. The steps with lowq values were wide, with the 1:1
step being the widest.

During p:q mode locking the neuron fired atp different
phasesCm , m51, . . . ,p. Here the phase was defined as t
spike-time modulo the period, divided by the period~see,
Sec. II!. On a mode-locking step the winding number w
constant, whereas the spike phase increased withv. For in-
stance, during 1:1 entrainmentC1 was equal to1

2 on the left
hand side of the step and increased to 1 on the right h
side of the step@Fig. 2~Ab!#.

There wereq different attractors of the dynamics forp:q
mode locking. The other attractors were obtained from
given attractor by shifting over multiples of the drive cycl
This procedure is illustrated in Fig. 2~B! for N5 2

3 . On the
first attractor, the neuron fired at phaseC1 on the first cycle,
at phaseC2 on the second cycle, and did not fire on the th
cycle. This spike pattern then repeated itself. A second att
tor was obtained by shifting this pattern over one period,
neuron then did not fire during the first cycle, fired atC1 on
the second and atC2 on the third cycle. A third attractor wa
obtained by shifting the first one over two drive cycles. Th
multistability of the spike times should not be confused w
a multistability that occurs for a noninvertible circle ma
~see, for instance, Ref.@35#!. In that case there are two o
more stable solutions withdifferentwinding numbers and the
Arnold tongues intersect.

From a given initial condition only one attractor was o
tained. The set of initial conditions from which a given a
tractor was obtained is the basin of attraction. In the spi
time map formulation of the dynamics the initial conditio
was the first spike time. Allq attractors were reached whe
the first spike time was varied between 0 andqT @Fig. 2~C!#.
When the dynamics were integrated in time using Eq.~1!,
the initial condition was the voltageVinit at the start of the
simulation. All attractors were reached whenVinit was varied
between 0 and 1~results not shown, see also@26#!.

The number of attractorsq varied nonmonotonically as
function of v. For instance, between the 2:1 and 1:1 ste
all otherq values were obtained@for clarity only data forq
<4 were shown in Fig. 2~Ac!#. The spike times~and phases!
changed discontinuously during a transition from oneq value
to another. Hence, whenq changed a spike-time bifurcatio
04191
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occurred, and the frequency value at which this happe
was a bifurcation point. The bifurcation points were not d
tributed uniformly across the frequency axis: there were
bifurcation points betweenv/2p'0.75 andv/2p'1.0, and
many betweenv/2p'0.5 andv/2p'0.75.

Reliability was defined as the stability of the attract
against intrinsic noise@27#. The discharge was unreliabl
when noise induced transitions from one attractor to a diff
ent attractor, or when it induced an extra spike or preven
a spike from occurring when there was only one stable
tractor. The attractors were not equally stable for all para
eter values corresponding to the same winding number. T
frequency values for which 1:1 entrainment was obtain
were considered as an example,v/2p50.7752 with C1

FIG. 2. ~A! The integrate-and-fire neuron was mode locked t
periodic piecewise constant current.~a! The average number o
spikes per cycle,̂N&5T/t, vs frequencyv52p/T. On the mode-
locking steps^N& was constant and equal to a fractionp/q, the
neuron then emittedp spikes inq cycles at phasesC1 , . . . ,Cp . ~b!
The phases for steps withp<3 and~c! the number of attractors,q,
with q<4, were plotted vsv. Averages were over 3200 spikes aft
discarding the first 800 spikes.~B! The number of attractors wa
equal toq. ~a! The winding number waŝN&5

2
3 , the neuron emitted

2 spikes in 3 cycles with phasesC1 andC2. The spike train was
periodic with period of 3 cycles. The distance between two sm
ticks is the cycle lengthT. ~b! Two other attractors were obtained b
shifting ~1! the first attractor over~2! one and~3! two periodsT,
respectively.~C! Neuron that was 1:2 mode locked to a drive wi
T50.56. All q attractors were reached from initial spike timest init

in the interval between 0 andqT. Each tick represented a spike, i
x ordinate was the spike timetn and itsy ordinate was given by the
starting spike time of the trial.~A!–~C! Parameters wereI
51.5, A50.4, andD50.
3-4
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50.5067 near the left hand side of the step andv/2p
50.8696 withC150.6383 in the middle of the step. Th
return map, where the next phasecn11 was plotted vs the
previous phasecn , was a single point (C1 ,C1) in the ab-
sence of noise~Fig. 3!. This point was the fixed point of the
map. For nonzero noise,D51024, and v/2p50.8696, the
return map consisted of a cloud of points distributed arou
the zero-noise point (C1 ,C1). The phase fluctuated aroun
the average value and the attractor was stable against n
However, forv/2p50.7752, the phase took any value b
tween 0 and 1. Noise induced an extra spike on some cy
at a phase that was far from the fixed point of the dynam
this resulted in large deviations of the spike phase. It too
number of cycles for the neuron to return to the attrac
Hence, the attractor was unstable against noise for the g
noise strength. Note that in the deterministic case the sta
ity of the solution is given by the Lyapunov exponent. For
the frequency values on the step the Lyapunov exponent
negative and the solution was stable@31,35#. In general, the
closer the neuron was to the edge of a step—a bifurca
point—the less stable the attractor was to intrinsic noise.
observed that attractors for mode-locking at higherq values
were less stable when the step width was smaller. For
piecewise constant periodic current considered in Fig. 2,
fixed point phases only took values between1

2 and 1. The
unstable edges of the step corresponded to the values1

2 and

FIG. 3. Spike-phase return map during 1:1 mode locking in
presence of noise. In the return map the next phasecn11 was plot-
ted vs the previous phasecn . In the absence of noise, the retu
map consisted of a single point with coordinates (C1 ,C1), hereC1

was the spike phase on the attractor. Two points were shown~1,
open diamond! drive period T51.15 (v/2p50.8696) in the
middle of the step and~2, open square! T51.29 (v/2p50.7752)
close to the edge of the step. In the presence of noise,D51024, the
attractor forT51.15 was stable. The return map consisted o
cloud of points around the zero-noise return map~1!. For T51.29,
the attractor was unstable against noise. Most points were clos
the zero-noise return map~2!. However, sometimes an extra spik
was introduced with a phasecn,0.5, the neuron then deviate
from the attractor and the corresponding points formed an o
orbit. One such orbit was shown as large filled circles connected
arrows that indicated the direction in which the orbit was travers
3000 iterates were used to construct the return map, the first
iterates were discarded. Other parameters wereI 51.5 andA50.4.
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1. For p.1, multiple phases have to fit in this interva
Hence, for higherp there was at least one phaseCm , (m
51, . . . ,p) close to the edge—the resulting attractor w
less stable against noise.

Next the amplitudeA was varied. ForA50, when there
was no periodic drive, the neuron was ‘‘mode locked’’
discrete frequencies valuesv/2p5p/qt, wheret'1.1 is the
average interspike interval of the neuron@Eq. ~3! in Sec. II#.
WhenA was nonzero,p:q mode locking occurred in a rang
of frequency values around these discrete points. The reg
in thev –A parameter space where the neuron wasp:q mode
locked formed Arnold tongues@Fig. 4~A!# @31#. The width of
the p:q step—the frequency range for which mode locki
was obtained—generally increased withA. However, for low
frequencies,v/2p,1 and A,0.4 the width~and also the
neuron’s firing rate! varied nonmonotonically with ampli-
tude. This was further investigated by comparing the dyna
ics on the 3:1 step forA50.3 andA50.4. ForA50.4, the 3
spike phases on the 3:1 step were between1

2 and 1 @Fig.
2~Ab!#, and from almost any initial condition the neuro
converged exponentially fast to the attractor@Fig. 5~Bb!#. In
contrast, forA50.3, the spike phases took values betwee
and 1 @Fig. 5~Ab!#, and convergence was slow when th
simulation was started at a spike phase far from the attra
@Fig. 5~Ba!#.

The Arnold-tongue structure in the presence of noise w
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n
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00

FIG. 4. Arnold tongues for a neuron driven by a piecewise c
stant periodic current. Arnold tongues were constructed as
scribed in Sec. II, the set of points with the same winding num
^N&5p/q was coded for itsp:q value as shown in the legend to th
right of ~C!. For clarity only a few of the Arnold tongues are show
in the graph.~A! Nv55000, NA559, D50; ~B! Nv51000 and
NA517, with noise strengthD equal to ~a! 131024 and ~b! 4
31023. ~C! The grid along theD axis consisted ofND550 values
between D5131028 and D5131022, Nv was 1000 andA
50.4. Averages were over 3200 spikes after discarding a trans
of 800 spikes. The driving current wasI 51.5. Arrows in ~A!,~B!
indicate the 1:1 mode-locking Arnold tongues.
3-5
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studied@Fig. 4~B!#. When the neuron remained on the attra
tor there was jitter in the spike times, but each spike that w
present in the zero-noise spike train did occur. Hence,
average number of spikes per cycle,^N&, was unchanged an
equal top/q. When the value of̂N& obtained in the simu-
lations was within 1

400 of p/q it was considered part of th
p:q Arnold tongue. For weak noise,D51024, the Arnold-
tongue structure was virtually identical to theD50 structure
@Fig. 4~Ba!#. Only points near the edge of the tongue we
unstable, as noise induced transitions between attracto
led to missing or extra spikes. Note that these extra or m
ing spikes did not cancel out in the temporal average: N

FIG. 5. ~A! Mode-locking steps forA50.3. ~a! The winding
number̂ N&, ~b! the spike phases,C1 , . . . ,Cp , and~c! the number
of attractorsq as a function of frequencyv. For clarity only data for
p<3 andq<4 are shown in b and c, respectively. Note that in~b!
the spike phases for smallv/2p took values between 0 and 1
Averages were over 3200 spike times after discarding a transie
800.~B! Convergence to the attractor during 3:1 mode locking w
slower for~a! A50.3 compared with~b! A50.4. The spike phase
on the attractor wereC1 , C2, and C3. The distance to the firs
one,Dc3n115c3n112C1, was plotted as a function ofn starting
from different initial spike timest init from the basin of attraction o
one of the three attractors. Herec3n11 was the spike phase of th
(3n11)th spike timet3n11. From top to bottom~in the direction of
the arrow!, t init was~a! 0.3, 0.7, 1.0, 1.3, 1.6, and 1.7;~b! 0.5, 0.7,
1.1, and 1.7. The last part of the trajectories was linear on a
scale and corresponded to exponential convergence onto the a
tor. Other parameters wereI 51.5, D50, and in~B! T53.32.
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the left hand side edge there could only be extra spik
increasinĝ N&, whereas near the right hand side there co
only be missing spikes, reducing^N&. Arnold tongues with
high p or q values were also unstable, however, these w
not resolved on the parameter grid and their absence c
not be observed in the figure. For higher noise levels,D
5431023, only the q51 steps remained and their widt
was much reduced compared withD50 @Fig. 4~Bb!#.

The mode-locking regions were also determined as
function of noise strength for a fixed amplitudeA50.4 @Fig.
4~C!#. The method for their construction was given in Sec.
Briefly, the winding number forD50 was determined nu
merically yielding a value forp andq. Thatp value was used
to calculates (p) @Eq. ~5!#. When s (p) was proportional to
AD the grid point was considered part of thep:q Arnold
tongue. The width of the tongue~step width! decreased as a
function of D, since more and more points close to the ed
became unstable. 1:1 mode locking was most stable; foD
51022, the 1:1 step was still present, whereas other st
had become unstable or could not be resolved on the pa
eter grid used for the simulations.

IV. MODE-LOCKING TO A QUASIPERIODIC CURRENT

The behavior of neurons driven by a quasiperiodic curr
was examined using the analytical spike-time map deri
for a piecewise constant current drive. The quasiperio
drive is intermediate between a periodic and a random~un-
correlated! drive. For a periodic drive, mode-locking region
are organized in Arnold tongues, unlike the mode-locki
regions for a random drive. Hence, the question is whet
mode-locking regions for a quasiperiodic drive are organiz
in Arnold tongues and how the reliability is related to th
winding number~s!.

The driving current was the sum of two periodic piec
wise constant currents with periodsT1 , T2 and amplitudes
A1 andA2, respectively. Here we usedT152 andT252A2.
In order to keepT1 /T2 irrational we varied the driving cur-
rent I instead of eitherT1 or T2 as was the case in the pre
ceding section.

For a drive only containing theT1 component, steps in the
number of spikes per cycle,^N1&5T1 /t, as a function ofI
were obtained@Fig. 6~Aa!#. Heret was the mean interspike
interval. The steps were at rational values^N&5p1 /q1,
hence the neuron producedp1 spikes at phasesC1 , . . . ,Cp1

in q1 cycles. The spike train was periodic with periodq1T1.
The phase of spike time t was defined as c1

5mod(t,T1)/T1. The same was true when only theT2 com-
ponent was present@Fig. 6~Ab!#, in that case the winding
number waŝ N2&5T2 /t5p2 /q2 and the phase was define
asc25mod(t,T2)/T2.

When both components were present, there were s
with either a rational winding number with respect
T1 , ^N1&5p1 /q1 @Fig. 6~Aa!# or with respect toT2 , ^N2&
5p2 /q2 @Fig. 6~Ab!#.

The parameter regions in (I ,A2) space with a fixed value
of p1 /q1 or p2 /q2 were organized in Arnold tongues@Fig.
6~Ac!#. For A250, only theT1 mode locking was obtained
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As A2 was increased, mode locking toT1 became unstable
for largeq1, and in some current rangesp2 /q2 mode locking
was obtained instead. When bothA1 andA2 were large, steps

FIG. 6. Mode locking to a quasiperiodic drive yielded Arno
tongues.~A! There were two sets of winding numbers,~a! ^N&
5T1 /t equal top1 /q1 for T1 mode locking and~b! T2 /t equal to
p2 /q2 for T2 mode locking, heret was the average interspike in
terval. Three sets of parameters were considered,A150.25, A2

50 ~a, continuous line!; A150, A250.25 ~b, continuous line!;
A150.125, A250.125 ~a,b, small circles!. The standard deviation
sT1 and sT2 of the spike phasec15mod(t,T1) and c2

5mod(t,T2), respectively, is also shown. Heret is the spike time.
During 1:1 mode locking toT1 , sT1,sT2, whereas for 1:1 mode
locking toT2 , sT2,sT1. ~c! The winding number was determine
on a grid ofA2 andI values (A1 was 0.4). The areas with the sam
winding number were coded as follows,~black! mode locking to
T1, from top to bottom, 2:1, 3:2, 1:1, and 1:2;~cross hatched! mode
locking to T2, from top to bottom, 2:1 and 1:1;~striped! quasiperi-
odic mode locking, ~top! 1/t51/T111/T2 and ~bottom! 2/T1

21/T2. ~B!,~C! In phase return maps, the phasecn11 of the next
spike timetn11 was plotted vs the current phasecn of tn . The scale
is the same for all graphs and is shown in Ca. The phase
calculated with respect to~B! T1 and ~C! T2. The amplitude was
A15A250.125 and~a! I 51.17 (p15q151); ~b! I 51.10 ~no ra-
tional winding number was found!; ~iii ! I 51.09 (p25q251).
Other parameters:T152, T252A2. Averages were over~Aa!, ~Ab!
1600 spikes after discarding the first 400; and~Ac! 3200 spikes
after discarding the first 800.
04191
were obtained with an average interspike intervalt for which
neither T1 /t nor T2 /t was rational. However,t could be
expressed as

1

t
5

p1

q1

1

T1
1

p2

q2

1

T2
, ~6!

with integer values, possibly negative, forp1 , p2 , q1, and
q2. In this case the neuron was mode locked to a lin
combination with rational coefficients of both periods—
quasiperiodic mode locking@36#. In Fig. 6~Ac! two examples
are shown, t51.1715, with 1/t51/T111/T2 and t
51.5468, with 1/t52/T121/T2. Note that in the latter case
p2 was negative.

The most prominent mode-locking regions were asso
ated with p15q151 ~and p250) and p25q251 ~and p1
50). The spike trains forp15q151 andp25q251 and for
an intermediate current value, were further analyzed us
phase return maps@Figs. 6~B!,6~C!#. During 1:1 mode lock-
ing to a periodic drive, the neuron spiked at a fixed phase
the interspike interval was constant and equal to the pe
of the drive. As a result the phase return map, the phas
the next spike time plotted vs the phase of current spike ti
consisted of only one point, the fixed point of the map.
trinsic noise introduced jitter in spike times, hence there w
jitter in the spike phases. The deviations of the spike ph
from the average spike phase were almost uncorrelated
tween consecutive cycles. The return map then consisted
spherical cloud of points centered around the fixed po
During 1:1 mode-locking to theT1 component in the quasi
periodic case there was jitter in the spike phasec1, even
without intrinsic noise. The jitter was due to theT2-periodic
drive component. The points in the phase return map were
a closed orbit, and the phases only took values between
and 0.78@Fig. 6~Ba!#. However, the return map ofc2 formed
an open orbit, and the phase had values between 0 an
@Fig. 6~Ca!#. The situation for 1:1 mode locking to theT2
component was similar, the phase return map with respec
T2 was a closed orbit@Fig. 6~Cc!#, and now thec1 return
map was an open orbit@Fig. 6~Bc!#. We took a current value
between the 1:1T1 and 1:1T2 mode-locking steps, that wa
not part of a step with a width of more than 1025. In that
case, the orbits were discontinuous with part of the or
missing@Figs. 6~Bb! and 6~Cb!#. The spike trains had a com
plicated structure; we could not establish whether they w
aperiodic or chaotic or whether the winding number was
rational.

The stability of 1:1T1 mode locking against noise wa
investigated@Figs. 7~A!,7~B!#. Three values for the driving
current were used,I 50.99 on the left hand side of the ste
I 51.12 in the middle of the step and 1.26 on the right ha
side of the step. The phase return map consisted of clo
orbits. The center of the orbits varied with the value of t
current, from close to 1 on the left hand side to1

2 on the right
hand side@Fig. 7~Ba!#. The interspike-interval return ma
also consisted of a closed orbit@Fig. 7~Aa!#. The orbits for
different current values were arranged concentrically, the
sition of the center did not shift since the average ISI had
remain the same, however, the diameter of the orbit did v

as
3-7
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FIG. 7. ~A!, ~C! interspike-interval and~B! spike-phase return maps for mode locking to a quasiperiodic current.~A!,~B! 1:1 mode
locking toT1 for ~a! three current values,~1! I 50.99,~2! I 51.12, and~3! I 51.26 without noise (D50); ~b! I 51.12 andD51024 and~c!
I 50.99, D51024. The amplitudes wereA150.4 andA250.05. The phase was calculated with respect toT1. The scale in~Ac! is different
from that in~Aa! and~Ab!. The ‘‘donut’’ in the lower left hand side corner corresponds to the zero-noise orbit~1! in ~Aa!. ~C! Quasiperiodic
mode locking, the average interspike interval was 1/t51/T111/T2. Parameters were~a,1! I 51.40, ~2! I 51.46, and~3! I 51.515 withD
50; ~b! I 51.46, andD51024; ~c! I 51.40 andD51024. The amplitudes wereA150.4 andA250.4. Arrows in ~Ac!, ~Bc!, and ~Cc!
indicate the initial noise-induced deviation from the attractor; the arrows in~Ca! and ~Cb! indicate a sharp excursion in the return map.
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The attractor for the current value in the middle of the s
was stable against noise. The return maps consisted
cloud of points distributed around the zero-noise orbit. T
attractor forI 50.99 was unstable against noise. Noise co
prevent spikes from happening, leading to missing spi
and an interspike interval that was approximately two cyc
The resulting deviation in spike phase decayed back to z
over the course of a few cycles. TheT2 component acted a
a deterministic noise source, the jitter based onp1 :q1 mode
locking s (p1) was approximately the sum of two terms,

~s (p1)!25a1D1a2A2 , ~7!

wherea1 anda2 were proportionality constants. Hence, t
T2 component brought the neuron closer to a bifurcat
point, and reduced the stability against noise.

Quasiperiodic mode locking was investigated using ph
and interspike-interval return maps@Fig. 7~C!#. The 1/t
51/T111/T2 mode-locking step was considered, three c
rent values were used,I 51.40 on the left hand side of th
step,I 51.46 in the middle of the step and 1.515 on the rig
hand side of the step. The phase return map ofc1 and c2

consisted of an open orbit~not shown!. The interspike inter-
val return map was a closed orbit with a complex shape@Fig.
7~Ca!#. It had a remarkable feature as indicated by the arro
in Figs. 7~Ca! and 7~Cb!. We made sure that the same featu
was also obtained by direct integration of Eq.~1!. In the
presence of noise, the orbit in the middle of the step w
stable@Fig. 7~Cb!#, whereas the orbit near the edge of t
step was unstable@Fig. 7~Cc!#.
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FIG. 8. Stability against noise of mode locking to a quasipe
odic piecewise constant current.~A! The average interspike interva
~ISI! is plotted as a function of average driving currentI for D
50 andD51023. The most stable mode-locking ratios, express
as 1/t5(p1 /q1)1/T11(p2 /q2)1/T2, are indicated in the graph.~B!
Closeup of a few smaller mode-locking steps forD50. The mode-
locking ratios are given in the graph. Other parameters were,T1

52, T252A2, andA15A250.2. Averages were over 3200 spike
after discarding a transient of 800.
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For A15A250.4 or 0.2, quasiperiodic mode-lockin
steps were also found for other ratios, including multiples
1/T121/T2 : 1/t5n(1/T121/T2) for n52, 3, . . . ~Fig.
8!. For these mode-locking steps we found only one attra
and the ISI return maps did not form closed orbits. Mod
locking steps for 1/t5 1

2 (2/T121/T2) and 1
2 (1/T111/T2)

were smaller than the current grid (231024) used in our
simulations. However, whenA2 was much smaller thanA1,
for instance,A150.4 andA250.05, these steps could b
resolved. The dynamics had two attractors and the ISI re
maps didnot form closed orbits.

The noise stability of the mode-locking steps was inv
tigated by comparing the ISI vs current curve for zero no
with that for D51023 @Fig. 8~A!#. Only the 1:1 mode-
locking steps toT1 ,T2 and the step with 1/t51/T111/T2
remained in the presence of noise. On these mode-loc
steps there was only one attractor with an ISI return map
formed a closed orbit.

Thus, there were mode-locked solutions with a ratio
winding number with respect to eitherT1 or T2, or a rational
combination thereof. In the former case, the non-mo
locked drive component generated deterministic jitter in
spike times. Steps with low values ofp1 andq1 (p2 andq2)
were more stable against intrinsic noise, and could also
main mode locked for a larger amplitudeA2 (A1). In that
case there were stillq1 (q2) attractors. The stability of thes
attractors to intrinsic noise was reduced since the determ
istic jitter would bring the attractor closer to a bifurcatio
point. For quasiperiodic mode locking there also could
multiple attractors. However, the corresponding steps w
small. We did not establish a general relationship betw
the values ofq1 and q2 and the number of attractors th
would be observed. For most of the examples studied h
there was only one attractor for quasiperiodic mode locki
The steps with an ISI return map that formed a closed o
were most stable. However, we did not establish whether
observation holds in general.

V. DISCUSSION

A. Noise stability of attractors and bifurcation structure

The bifurcation structure explained the differences in
liability between neurons driven by random and perio
fluctuating currents@26#. For the random fluctuating drive w
found that there was one stable attractor@26#. We conjec-
tured that in general neurons driven by a random fluctua
current have only one stable attractor@26#. Furthermore, we
conjectured that for any given stimulus parameter the neu
was close to a bifurcation point for which only a few spi
times changed discontinuously@26#. Only those spike times
and perhaps a few spike times immediately following a
furcation spike time are unreliable. Hence, for a rand
drive, the overall reliability was reduced, but was still hig
for most parameter values.

When a periodic drive was injected into the model ne
ron, mode locking could occur@31,37–47#. During mode
locking the neuron producedp spikes perq cycles and the
spike train would repeat itself eachq cycles~herep andq are
positive integers!. Hence, there could be multiple stable a
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tractors with the same winding number. In model simulatio
we found that duringp:q mode locking there wereq attrac-
tors. The attractor was most stable against noise during
mode locking, when there was only one attractor, and l
reliable outside 1:1 mode locking. Hence, these theoret
results predict a reliability resonance for a periodic drive t
is absent for a random drive. The reliability of pyramid
cells and interneurons in rat prefrontal cortical slices h
been studied experimentally with sinusoidal current inject
over a range of frequencies@23#. Pyramidal cells mode
locked in the 5–20 Hz range, whereas interneurons mo
locked in the 5–50 Hz range@23#. Spike-time reliability was
always highest during 1:1 mode locking@23,25#.

A quasiperiodic drive is intermediate between a perio
and random fluctuating drive since it is not periodic but
does have deterministic structure. Here we report that
bifurcation structure of a neuron driven by a quasiperio
drive @36# is similar to that for a periodically driven neuron
In particular, the mode-locking regions were organized
Arnold tongues. The widest steps corresponded to 1:1 m
locking to either one of the two components of the drive
quasiperiodic mode locking with small values forq1 andq2.
On these steps there was only one attractor and the ISI re
map formed a closed orbit. These steps were the most st
against noise and hence yielded the most reliable discha
These results show that reliability is closely correlated to
number of attractors and the shape of return maps.

B. Reliability and Lyapunov exponents

The zero-noise stability of mode-locked solutions of pe
odically driven integrate-and-fire neurons was previou
studied in terms of Lyapunov exponents@31,35#,

l5211 lim
n→`

1

tn112t1
(
k50

n

lnU I 1 f ~ tk11!

211I 1 f ~ tk11!
U, ~8!

here tk was thekth spike time on the attractor,I was the
driving current, andf (t) was the fluctuating driving current
All periodic mode-locked solutions had a negative Lyapun
exponent and were stable@31,35#. The periodic solutions
with a low q value were more stable since the Lyapun
exponent was more negative~see Fig. 2 in Ref.@31#!. When
the neuron remained close to the attractor in the presenc
intrinsic noise, the spike-time jitter was proportional to t
noise standard deviationAD. The proportionality constan
depended on the Lyapunov exponent: a more negative
Lyapunov coefficient resulted in a smaller proportional
constant, hence, less spike-time jitter. A detailed derivatio
in preparation@32#.

Stronger noise induced transitions between different
tractors, or missing or extra spikes. The occurrence of th
deviations from the attractor depended on the value of
Lyapunov exponent and the distance to a bifurcation po
As mentioned above, Lyapunov exponents characterized
fast a deviation from an attractor decayed to zero and de
mined the amplitude of noise-induced fluctuations around
zero-noise voltage trace. Deviations from attractors could
cur when this amplitude was large enough to reach a bi
3-9
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cation point. The Lyapunov exponent depended on the va
of the driving currentf (tk) at the spike times on the attracto
@Eq. ~8!#. Here, piecewise constant periodic currents w
used and spikes occurred at a phase between1

2 and 1~except
for the parameters values used in Fig. 5!. Hence,f (tk) al-
ways had the same value and the Lyapunov exponent
depended on the average interspike interval. As a resul
could approximately delineate the effect of the bifurcati
structure on the reliability of neural spike trains from that
the variation off (t). The result is that both the Lyapuno
exponent and the distance to the bifurcation points are
portant determinants of the reliability:the value of the
Lyapunov exponent itself does not predict reliability in e
periment, since transitions between attractors occur
physiological noise levels@26#.

C. Asymptotic attractor stability and reliability

In experiments reliability is assessed by presenting
same stimulus across multiple trials. In model simulatio
this procedure corresponds to injecting the same input sti
lus each time with an independent realization of the intrin
noise ~trial!. The attractor reliabilityRa is defined as the
stability of the attractor against noise and is proportiona
the inverse of the number of distinct spike trains obtain
across a large number of trials@27#. Two spike trains are
distinct when there is at least one spike time that is m
further thanAD from any spike time in the other spike tra
(D is the variance of the intrinsic noise!. When the neuron
remains on one attractor, thespike-time jitterin thenth spike
time (n51,2, . . . ) across many trials is proportional toAD
andRa51 @32#. Noise can induce transitions between diffe
ent attractors, or lead to missing or extra spikes. Disti
spike trains are then obtained across different trials, relia
ity is reduced and the spike-time jitter is not proportional
AD anymore. In this paper, the asymptotic noise stability
attractors was determined based on one long trial with
tween 2000 and 10 000 spikes. When there are no transit
between attractors, missing or extra spikes, thespike-phase
jitter is proportional toAD and Ra51. This procedure can
underestimate the reliability compared with that obtained
multiple short trials since transitions between attractors d
ing a long trial may not occur on short trials. However, th
only affects the edges of mode-locking steps and the qu
tative behavior of the reliability was the same~comparison
not shown!.

D. Future work

Neurons are more complex than the integrate-and-
model neuron studied here. They contain many differ
membrane currents@48#. For instance, in model simulation
using cells with a slow calcium-dependent potassium cur
~model as in Ref.@49#! convergence to the attractor cou
take up to one second. During that period the output sp
train depended on the voltage and other internal varia
such as calcium concentration at stimulus onset. Hence,
ing the transient the discharge might be unreliable. Howe
once the attractor was reached it was stable. How do th
slow currents influence reliability underin vivo conditions?
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Neurons also display subthreshold membrane potential o
lations due to active currents@50–52#. The oscillation fre-
quency depended on the type of neuron@23,53#. How does
the bifurcation structure depend on these intrinsic osci
tions? We plan to address these and other issues in fu
work.
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APPENDIX

For clarity, the notation in this appendix differs from th
in the main text as follows. The constant depolarizing curr
I and fluctuating currentf (t) are combined into a fluctuating
current denoted byI (t). The two current values of the piece
wise constant current will be denoted by subscripts 0 and
and the two components of the quasiperiodic current will
indicated by superscriptsA andB. In the following four sec-
tions the analytical spike-time maps used in the numer
simulations are derived for the periodic piecewise const
drive without and with noise, and for the quasiperiod
piecewise constant drive without and with noise, resp
tively.

Neuron driven by a periodic piecewise constant current

The neuron is driven by a piecewise constant currentI (t)
with period T, I (t)5I 0 when mod(t,T),T1 and it is I 1
when mod(t,T)>T1. @Note that in the notation of the mai
text, I 05I 2A, I 15I 1A, andT15T/2.#

The solution to

dV

dt
52V1I ~ t !,

with initial condition V(t1)50 is

V~ t2!5e2t2@h~ t2!2h~ t1!#,

where

h~ t !5E
0

t

ds esI ~s!

5 (
n51

N

e(n21)TE
0

T

ds esI ~s!1eNTE
0

t

ds esI ~s!

5a
12eNT

12eT
1eNTr ~t!,

with t5t2NT,
3-10
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r ~t!5E
0

t

ds esI ~s!5I 0~et21!, t,T1

5a11I 1~et2eT1!, t>T1

and

a15I 0~eT121!,

a5a11I 1~eT2eT1!.

A spike is generated whenV(t2)51, yielding

h~ t2!2h~ t1!5et2;

using t15N1T1t1 and t25N2T1t2, we get

eN2T1t25
a

12eT
~eN1T2eN2T!1eN2Tr ~t2!2eN1Tr ~t1!.

Combining all the terms containingt2 on the left hand side
yields

et25b61e2DNTg6 ,

with

b15
1

I 021 F a

12eT
1I 0G ,

b25
1

I 121 F a

12eT
2a11I 1eT1G

and

g15
1

I 021 F2
a

12eT
1r ~t1!G ,

g25
1

I 121 F2
a

12eT
1r ~t1!G ,

whereDN5N22N1. The solution to theg1 equation has to
satisfy 0<t2,T1 and the solution to theg2 equation has to
satisfy T1<t2,T. All different valuesDN50,1, . . . were
tried until a solution was found.

Neuron with intrinsic noise driven by a periodic piecewise
constant current

In the presence of intrinsic noise, the dynamics is

dV

dt
52V1I ~ t !1j~ t !,

with ^j(t)&50, ^j(t)j(t8)&5Dd(t2t8). The equation for
the next spike timet2, starting fromV(t1)50, is

V~ t2!5e2t2@h~ t2!2h~ t1!#1lx51,
04191
wherex is Gaussian white noise with mean zero and u
variance, and

l5AD

2
@12e22(t22t1)#. ~A1!

Here, we assume that the noise trajectoryj(t) leading tox at
t2 does not lead to a threshold crossing prior tot2. Prelimi-
nary simulations using direct integration yield a spike-tim
variance similar to that obtained via the algorithm discus
here.

The resulting equation is squared to remove the squ
root,

@h~ t2!2h~ t1!2et2#25
D

2
~e2t22e2t1!x2,

yielding,

F a

12eT
~e2DNT21!1r ~t2!2e2DNTr ~t1!2et2G 2

5
Dx2

2
~e2t22e2t122DNT!,

which is equivalent to

~h6x1d6!25
Dx2

2
~x22e2t122DNT!,

wherex5et2, h15I 021, h25I 121, and

d15
a

12eT
~e2DNT21!2e2DNTr ~t1!2I 0 ,

d25
a

12eT
~e2DNT21!2e2DNTr ~t1!1a12I 1eT1.

The result is a quadratic equation inx,

S h6
2 2

Dx2

2 D x212d6h6x1S d6
2 1

Dx2

2
e2t122DNTD[ax2

12bx1c50, ~A2!

with a solution

x52
b

a
6

1

a
Ab22ac. ~A3!

The resulting algorithm is as follows. Generate a Gauss
deviate x, and calculate r (t1) and h6 . Calculate
d6 , a, b, and c for a given DN and solve the quadratic
equation. Iterate overDN50,1, . . . until a solution is ob-
tained for the correct sign ofx that satisfies 0<t2,T1 for
the d1 equationor T1<t2,T for the d2 equation.
3-11
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Neuron driven by a quasiperiodic piecewise constant current

The neuron is driven by a sum of two periodic piecew
constant currents,I (t)5I A(t)1I B(t), with I A5I 0

A when 0
<mod(t,TA),T1

A and I A5I 1
A when T1

A<mod(t,TA),TA,
likewise, I B5I 0

B when 0<mod(t,TB),T1
B and I B5I 1

B when
T1

B<mod(t,TB),TB. ~In the notation of the main text,I 0
A

5I /22A1 , I 1
A5I /21A1 , I 0

B5I /22A2 , I 1
B5I /21A2 , T1

A

5T1/2, andT1
B5T2/2.!

Starting fromV(t1)50, the equation for the next spik
time t2 is again given by

V~ t2!5e2t2@h~ t2!2h~ t1!#51. ~A4!

However, nowh(t) is the sum of two terms,

h~ t !5E
0

t

ds esI ~s!5hA~ t !1hB~ t !,

with

hA~ t !5aA
12eNATA

12eTA 1eNATA
r A~tA!,

hB~ t !5aB
12eNBTB

12eTB 1eNBTB
r B~tB!,

and

r A~tA!5I 0
A~etA

21!, tA,T1
A

5a1
A1I 1

A~etA
2eT1

A
!, tA>T1

A ,

r B~tB!5I 0
B~etB

21!, tB,T1
B

5a1
B1I 1

B~etB
2eT1

B
!, tB>T1

B ,

aA5a1
A1I 1

A~eTA
2eT1

A
!,

aB5a1
B1I 1

B~eTB
2eT1

B
!,

a1
A5I 0

A~eT1
A
21!,

a1
B5I 0

B~eT1
B
21!,

where t5NATA1tA5NBTB1tB. With the substitutiont1

5N1
AT1

A1t1
A5N1

BT1
B1t1

B and t25N2
AT2

A1t2
A5N2

BT2
B1t2

B ,
Eq. ~A4! reads

et2
A

1DNATA
5e2N1

ATA
@hA~ t2!2hA~ t1!1hB~ t2!2hB~ t1!#

5
aA

12eTA ~12eDNATA
!1eDNATA

r A~t2
A!2r A~t1

A!

1
aB

12eTB ~eD12eD2!1eD2r B~t2
A2D!

2eD1r B~t1
B!,
04191
where DNA5N2
A2N1

A , D5N2
BTB2N2

ATA, D15N1
BTB

2N1
ATA, D25N2

BTB2N1
ATA andt2

B5t2
A2D. Combining the

terms that containet2
A

yields

et2
A
~h6

A 1h6
B !1d1d6

A 1d6
B 50,

with

h1
A 5eDNATA

~ I 0
A21!,

h2
A 5eDNATA

~ I 1
A21!,

h1
B 5eD22DI 0

B ,

h2
B 5eD22DI 1

B ,

and

d1
A 5eDNATA

~2I 0
A!,

d2
A 5eDNATA

~a1
A2I 1

AeT1
A
!,

d1
B 5eD2~2I 0

B!,

d2
B 5eD2~a1

B2I 1
BeT1

B
!,

d5
aA

12eTA ~12eDNATA
!2r A~t1

A!1
aB

12eTB ~eD12eD2!

2eD1r B~t1
B!.

For each value ofN2
A andN2

B , there are four possible solu

tions foret2
A
. The sign of theA drive at timet2 is denoted by

SA and the sign of theB drive is SB. Each combination of
SA56 and SB56 could be a solution. The real solutio
needs to satisfy, 0<t2

A,T1
A for SA51 or T1

A<t2
A,TA for

SA52, and 0<t2
B,T1

B for SB51 or T1
B<t2

B,TB for SB

52, where, as before,t2
B5t2

A2D. The algorithm uses dif-
ferent values ofN2

A andN2
B until a solution that satisfies th

constraints is found. The tried valuesN2
A andN2

B are ordered
such that consecutive values oft5max(N2

ATA,N2
BTB) in-

crease monotonically.

Neuron with intrinsic noise driven by a quasiperiodic
piecewise constant current

In the presence of noise Eq.~A4! reads

V~ t2!5e2t2@h~ t2!2h~ t1!#1lx51,

wherel is given by Eq.~A1!. Using t15N1
AT1

A1t1
A and t2

5N2
AT2

A1t2
A , we obtain
3-12
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e2N1
ATA

@h~ t2!2h~ t1!#2et2
A

1DNATA

1AD

2
~exp@2t2

A12DNATA#2e2t1
A
!x50, ~A5!

this is rewritten as

xC11C21AD

2
~x2e2DNATA

2e2t1
A
!x50, ~A6!

with x5et2
A
, C15h6

A 1h6
B , and C25d1d6

A 1d6
B with the

h ’s andd ’s defined as in the preceding section.x is one of
the two solutions of the quadratic equation,

~xC11C2!25
Dx2

2
~x2e2DNATA

2e2t1
A
!,

rewritten as

ax212bx1c50,
ci.

on

ro

u

or-

eu

04191
with solution

x52
b

a
6

1

a
Ab22ac,

where,

a5C1
22

Dx2

2
e2DNATA

,

b5C1C2 ,

c5C2
21

Dx2

2
e2t1

A
.

Different values forN2
A andN2

B are tried as described in th
preceding section.
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